
Dynamics of 
Atmospheric Flight 

BERNARD ETKIN. c.M.. D.Eng.. FRSC. FAIAA. FCAE 
University Professor Emeritus, Institute for Aerospace Studies (UTIAS) 

and formerly Dean, Faculty of Applied Science and Engineering 
University of Toronto 

DOVER PUBLICATIONS, INC. 
Mineola, New York 



In  my book, Dynamics of Flight, the dedication read "To 
the men of science and engineering whose contributions to 
aviation have made it a dominant force in shaping the 
destiny of mankind." 1 now add: 

To those men of science and engineering, who with sensitivity 
and concern, develop and apply their technological arts 
towards a better future for man on Earth and in space. 

Copyright 

Copyright O 1972, 2000 by Bernard Etkin 
All rights reserved. 

Bibliographical Note 

This Dover edition, first published in 2005, is an unabridged republication 
of the work originally published by John Wiley & Sons, Inc., New York, in 
1972. The author has provided a new Errata list (pages 580-581) for the 
Dover edition. 

Library of Congress Cataloging-in-Publication Data 

Etkin, Bernard. 
Dynamics of atmospheric flight 1 Bernard Etkin. 

p. cm. 
Originally published: New York : Wiley, 1972. 
Includes bibliographical references and index. 
ISBN 0-486-44522-4 (pbk.) 

1. Aerodynamics. 2. Stability of airplanes. 3. Flight. I. Title. 

Manufactured in the United States of America 
Dover Publications, Inc., 31 East 2nd Street, Mineola, N.Y. 11501 



Preface 

This book originally was intended to be a modest revision of my earlier 
work, Dynamics of Flight-Stability and Control, published in 1959. As the 
task progressed, however, I found that the developments of the intervening 
decade, and the shift in my own approach to the subject, made a "modest 
revision" impossible. Thus this volume is virtually a new book, with organi- 
zation and content substantially different from its predecessor. Two principal 
factors caused this change: (1) the proliferation of vehicle types and flight 
regimes, particularly hypersonic and space flight, and (2) the explosive 
growth of machine computation. 

The first factor compelled me to abandon the long-standing simplifying 
assumption that the Earth's surface could be represented by a plane fixed 
in inertial space, and to include in the mathematical model all the eom- 
plications that arise from the curvature and rotation of the Earth. 

The second factor had two profound effects. One was that since we are 
no longer confined to primitive computation methods, it is commonplace 
nowadays in industry to construct highly sophisticated mathematical 
"simulations" of systems for the purpose of carrying out research and design 
studies. The emphasis on simple approximations is thereby reduced, and the 
need to set up accurate (even though complicated) mathematical models 
increased. The other effect of the computing revolution (on me a t  any rate) 
has been to producc a shift to modern algcbra (vcctor/matrix analysis) as the 
basic tool for analysis. This is ideally suited to digital computation. A 

iii 



iv Dynamics of atmospheric fight 

tertiary effect has derived from the ready availability to me of sophisticated 
computing machinery, which I have used for the computation of many 
numerical examples, to illustrate both typical results and how to apply the 
theory. 

I have continued as in the previous book, to  emphasize fundamentals 
since, as I stated in the preface to  Dynamics of Flight-Stability and Control, 
"The art of airplane and missile design is progressing so rapidly, and the 
configurations and flight regimes of interest are so varied that one is scarcely 
justified in speaking of typical configurations and typical results. Each new 
departure brings with it  its own special problems. Engineers in this field must 
always be alert to discover these, and be adequately prepared to  tackle 
them-they must be ready to discard long-accepted methods and assump- 
tions, and to venture in new directions with confidence. The proper back- 
ground for such ventures [and for such confidence] is a thorough understanding 
of the underlying principles and the essential techniques." To which T. 
Hacker (ref. 1.11) appropriately adds that some doubt should leaven the 
confidence and that "the effort for a thorough understanding of principles 
and techniques should be completed by the desire to  further . . . the former 
and improve the latter." 

Chapters 2 and 3 review the foundation in mathematics and system theory 
for the material that follows. Readers who are familiar with this material 
will find it  useful for review and reference. For readers whose background 
has not included these topics, a study of these two chapters is essential 
to  understanding the rest of the book. Chapters 4 and 5 continue 
with the building of a general mathematical model for flight 
vehicles and contain many explicit variations of such models. The 
aerodynamic side of the subject is explored next in Chapters 6 to 8, and 
specific applications, with many fully worked numerical illustrations, are 
given in Chapters 9 to 13. The example vehicles range from STOL to 
hypersonic. I have omitted the rather extensive appendices of data that were 
contained in the previous book, simply in the interests of economy. These 
data are now available in the USAF Handbook of Stability and Control 
Nethods and the Data Sheets of The Royal Aeronautical Society. I also 
omitted, on the grounds of time and economy, a planned chapter on the 
dynamics of spacecraft entry into the atmosphere. However, the general 
equations of Chapter 5 embrace this application. 

This book is written for both students and practicing engineers. Chapters 
2 to  5 are not especially suited for an introductory course, but are appro- 
priate for the more serious student who wishes to qualify as a practitioner 
in this field. The remaining chapters provide ample useful material for an 
introductory course when used in conjunction with a less rigorous develop- 
ment of the small-perturbation equations for the "flat-Earth" case. 
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Introduction 

C H A P T E R  I 

This book is about the motion of velhicles that Jly in the atmosphere. As 
such it belongs to the branch of engineering science called applied mechanics. 
The three italicized words above warrant further discussion. To begin with 
$9-the dictionary definition is not very restrictive, although i t  implies 
motion through the air, the earliest application being of course to birds. 
However, we also say "a stone flies" or "an arrow flies," so the notion of 
sustention (lift) is not necessarily implied. Even the atmospheric medium 
is lost in "the flight of angels." We propose as a logical scientific def- 
inition that flying be defined as motion through a fluid medium or empty 
space. Thus a satellite "flies" through space and a submarine "flies" through 
the water. Note that a dirigible in the air and a submarine in the water are 
the same from a mechanical standpoint-the weight in each instance is 
balanced by buoyancy. They are simply separated by three orders of 
magnitude in density. By vehicle is meant any flying object that is made up 
of an arbitrary system of deformable bodies that are somehow joined together. 
To illustrate with some examples: (1) A rifle bullet is the simplest kind, which 
can be thought of as a single ideally-rigid body. (2) A jet transport is a more 
complicated vehicle, comprising a main elastic body (the airframe and all 
the parts attached to it), rotating subsystems (the jet engines), articulated 
subsystems (the aerodynamic controls) and fluid subsystems (fuel in tanks). 
(3) An astronaut attached to his orbiting spacecraft by a long flexible cable 
is a further complex example of the general kind of system we are concerned 
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with. Note that by the above definition a vehicle does not necessarily have 
to carry goods or passengers, although i t  usually does. The logic of the def- 
initions is simply that the underlying engineering science is common to all 
these examples, and the methods of formulating and solving problems 
concerning the motion are fundamentally the same. 

As is usual with definitions, we can find examples that don't fit very well. 
There are special cases of motion a t  an interface which we may or may not 
include in flying-for example, surface ships, hydrofoil craft and air-cushion 
vehicles. In  this connection it is worth noting that developments of hydrofoils 
and ACV's are frequently associated with the Aerospace industry. The main 
difference between these cases, and those of "true" flight, is that the latter 
is essentially three-dimensional, whereas the interface vehicles mentioned 
(as well as cars, trains, etc.) move approximately in a two-dimensional 
field. The underlying principles and methods are still the same however, 
with certain modifications in detail being needed to treat these "surface" 
vehicles. 

Now having defined vehicles and flying, we go on to look more carefully 
a t  what we mean by motion. I t  is convenient to subdivide it into several parts: 

Gross Motion : 
(i) Trajectory of the vehicle mass center. 
(ii) "Attitude" motion, or rotations of the vehicle "as a whole." 

Pine Motion: 
(i) Relative motion of rotating or articulated sub-systems, such as 

engines, gyroscopes, or aerodynamic control surfaces. 
(ii) Distortional motion of deformable structures, such as wing bending 

and twisting. 
(iii) Liquid sloshing. 

This subdivision is helpful both from the standpoint of the technical 
problems associated with the different motions, and of the formulation of 
their analysis. It is surely self-evident that studies of these motions must 
be central to the design and operation of aircraft, spacecraft, rockets, 
missiles, etc. To be able to formulate and solve the relevant problems, we 
must draw on several basic disciplines from engineering science. The re- 
lationships are shown on Fig. 1 .l. It is quite evident from this figure that 
the practicing flight dynamicist requires intensive training in several 
branches of engineering science, and a broad outlook insofar as the practical 
ramifications of his work are concerned. 

In  the classes of vehicles, in the types of motions, and in the medium of 
flight, this boolr treats a restricted set of all possible cases. I ts emphasis is 
on the flight of airplanes in the atmosphere. The general equations derived, 
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Mechanics of rigid Vehicle 
bodies design 

Mechanics of elastic FLIGHT Vehicle 
structures operation 

Human pilot FI-' ( 

(flying qualities. (control, 

FIG. 1.1 Block diagram of disciplines. 

and the methods of solution presented, are however readily modified and 
extended to treat the other situations that are embraced by the general 
problem. 

All the fundamental science and mathematics needed to develop this 
subject existed in the literature by the time the Wright brothers flew. 
Newton, and other giants of the 18th and 19th centuries, such as Bernoulli, 
Euler, Lagrange, and Laplace, provided the building blocks in solid me- 
chanics, fluid mechanics, and mathematics. The needed applications to aero- 
nautics were made mostly after 1900 by workers in many countries, of whom 
special reference should be made to the Wright brothers, 6. H. Bryan, 
F. W. Lanchester, J. C. Hunsaker, H. B. Glauert, B. M. Jones, and S. B. 
Gates. These pioneers introduced and extended the basis for analysis and 
experiment that underlies all modern practice.? This body of knowledge is 
well documented in several texts of that period, e.g. ref. 1.4. Concurrently, 
principally in the USA and Britain, a large body of aerodynamic data was 
accumulated, serving as a basis for practical design. 

Newton's laws of motion provide the connection between environmental 
forces and resulting motion for all but relativistic and quantum-dynamical 
processes, including all of "ordinary" and much of celestial mechanics. What 
then distinguishes flight dynamics from other branches of applied mechanics? 

t An excellent account of the early history is given in the 1970 von KBrmBn Lecture 
by C. D. Perkins (ref. 1.13). 
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Primarily it is the special nature of the force fields with which we have 
to be concerned, the absence of the kinematical constraints central to 
machines and mechanisms, and the nature of the control systems used 
in fight. The external force fields may be identified as follows: 

"Strong" fields : 
(i) Gravity 

(ii) Aerodynamic 
(iii) Buoyancy 

"Weak" fields : 
(iv) Magnetic 
(v) Solar radiation 

We should observe that two of these fields, aerodynamic and solar radiation, 
produce important heat transfer to the vehicle in addition to momentum 
transfer (force). Sometimes we cannot separate the thermal and mechanical 
problems (ref. 1.5). Of these fields only the strong ones are of interest for 
atmospheric and oceanic flight, the weak fields being important only in 
space. It should be remarked that even in atmospheric flight the gravity 
force can not always be approximated as a constant vector in an inertial 
frame. Rotations associated with Earth curvature, and the inverse square 
law, become important in certain cases of high-speed and high-altitude 
flight (Chapters 5 and 9). 

The prediction and measurement of aerodynamic forces is the principal 
distinguishing feature of flight dynamics. The size of this task is illustrated 
by Fig. 1.2, which shows the enormous range of variables that need to be 
considered in connection with wings alone. To be added, of course, are the 
complications of propulsion systems (propellers, jets, rockets) and of com- 
pound geometries (wing + body + tail). 

As remarked above, Newton's laws state the connection between force 
and motion. The commonest problem consists of finding the motion when 
the laws for the forces are given (all the numerical examples given in this 
book are of this kind). However we must be aware of certain important 
variations : 

1. Inverse problems of first kind-the system and the motion are given 
and the forces have to be calculated. 

2. Inverse problem of the second kind-the forces and the motion are 
given and the system constants have to be found. 

3. Mixed problems-the unknowns are a mixture of variables from the 
force, system, and motion. 

Examples of these inverse and mixed problems often turn up in research, 
when one is trying to deduce aerodynamic forces from the observed motion 
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FIG. 1.2 Spectrum of aerodynamic problems for wings. 

of a vehicle in flight or of a model in a wind tunnel. Another example is the 
deduction of harmonics of the Earth's gravity field from observed pertur- 
bations of satellite orbits. These problems are closely related to the "plant 
identification" or "parameter identification" problem that is of great current 
interest .in system theory. (Inverse problems were treated in Chapter 11 of 
Dynamics of Flight-Stability and Control, but are omitted here.) 

TYPES OF PROBLEMS 

The main types of flight dynamics problem that occur in engineering 
practice are : 

1. Calculation of "performance" quantities, such as speed, height, range, 
and fuel consumption. 

2. Calculation of trajectories, such as launch, reentry, orbital and landing. 
3. Stability of motion. 
4. Response of vehicle to control actuation and to propulsive changes. 
5. Response to atmospheric turbulence, and how to control it. 
6. Aeroelastic oscillations (flutter). 
7. Assessment of human-pilot/machine combination (handling qualities). 



It takes little imagination to appreciate that, in view of the many vehicle 
types that have to be dealt with, a number of subspecialties exist within 
the ranks of flight dynamicists, related to some extent to the above problem 
categories. In  the context of the modern aerospace industry these problems 
are seldom simple or routine. On the contrary they present great challenges 
in analysis, computation, and experiment. 

THE TOOLS OF FLIGHT DYNAMICISTS 

The tools used by flight dynamicists to solve the design and operational 
problems of vehicles may be grouped under three headings: 

Analytical 
Computational 
Experimental 

The analytical tools are essentially the same as those used in other branches 
of mechanics. Applied mathematics is the analyst's handmaiden (and some- 
times proves to be such a charmer that she seduces him away from flight 
dynamics). One important branch of applied mathematics is what is now 
known as system theory, including stochastic processes and optimization. 
It has become a central tool for analysts. Another aspect of this subject that 
has received a great deal of attention in recent years is stability theory, 
sparked by the rediscovery in the English-speaking world of the 19th 
century work of Lyapunov. At least insofar as manned flight vehicles are 
concerned, vehicle stability per se is not as important as one might suppose. 
It is neither a necessary nor a sufficient condition for successful controlled 
flight. Good airplanes have had slightly unstable modes in some part of their 
flight regime, and on the other hand, a completely stable vehicle may have 
quite unacceptable handling qualities. It is performance criteria that really 
matter, so to expend a great deal of analytical and computational effort 
on finding stability boundaries of nonlinear and time-varying systems may 
not be really worthwhile. On the other hand, the computation of stability 
of small disturbances from a steady state, i.e. the linear eigenvalue problem 
that is normally part of the system study, is very useful indeed, and may well 
provide enough information about stability from a practical standpoint. 

On the computation side, the most important fact is that the availability 
of machine computation has revolutionized practice in this subject over 
the past ten years. Problems of system performance, system design, and op- 
timization that could not have been tackled a t  all a dozen years ago are 
now handled on a more or less routine basis. 

The experimental tools of the flight dynamicist are generally unique to 
this field. First, there are those that are used to find the aerodynamic inputs. 
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Wind tunnels and shock tubes that cover most of the spectrum of atmospheric 
flight are now available in the major aerodynamic laboratories of the world. 
In  addition to fixed laboratory equipment, there are aeroballistic ranges for 
dynamic investigations, as well as rocket-boosted and gun-launched free- 
flight model techniques. Hand in hand with the development of these general 
facilities has gone that of a myriad of sensors and instruments, mainly 
electronic, for measuring forces, pressures, temperatures, acceleration, 
angular velocity, etc. 

Second, we must mention the flight simulator as an experimental tool 
used directly by the flight dynamicist. In  it  he studies mainly the matching 
of the man to the machine. This is an essential step for radically new flight 
situations, e.g. space capsule reentry, or transition of a tilt-wing VTOL 
airplane from hovering to forward speed. The ability of the pilot to control 
the vehicle must be assured long before the prototype stage. This cannot yet 
be done without test, although limited progress in this direction is being 
made through studies of mathematical models of human pilots. The prewar 
Link trainer, a rudimentary device, has evolved today into a highly complex, 
highly sophisticated apparatus. Special simulators, built for most new major 
aircraft types, provide both efficient means for pilot training, and a research 
tool for studying flying qualities of vehicles and dynamics of human pilots. 



Analytical tools 

C H A P T E R  2 

This chapter contains a summary of the principal analytical tools that 
are used in the formulation and solution of problems of flight mechanics. 
Much of the content will be familiar to readers with a strong mathematical 
background, and they should make short work of it. 

The topics treated are vector/matrix algebra, Eaplace and Fourier trans- 
forms, random process theory, and machine computation. This selection is a 
reflection of current needs in research and industry. The vector/matrix 
formalism has been adopted as a principal mathematical tool because it 
provides a single powerful framework that serves for all of kinematics, 
dynamics, and system theory, and because it is a t  the same time a most 
suitable way of organizing analysis for digital computation.? The treatment 
is intended to be of an expository and summary nature, rather than rigorous, 
although some derivations are included. The student who wishes to pursue 
any of the topics in greater detail should consult the bibliography. 

-1 Most computation centers have library programs for the manipulation of matrices. 
These are routine operations. 
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2.2 VECTOR/MATRIX ALGEBRA 

As has already been remarked, this book is written largely in the language 
of matrix algebra. Since this subject is now so well covered in undergraduate 
mathematics courses and in numerous text books, (2.1,2.11) we make only 
a few observations here. 

I n  this treatment no formal distinction is made between vectors and 
matrices, the former being simply column matrices. In  particular the 
familiar vectors of mechanics, such as force and velocity, are simply three- 
element column matrices. For the most part we use boldface capital letters 
for matrices, e.g. A = [aii], and boldface lower case for vectors, e.g. v  = [vJ. 
The transpose and inverse are denoted by superscripts, e.g. A ~ ,  A-l. The 
scalar product then appears as 

and the vector product as 
u x v = i ; v  

where is a skew-symmetric 3 x 3 matrix derived from the vector n, i.e. 

As usual the identity matrix is denoted by 

in which is the Kronecker delta. 

2.3 LAPLACE AND FOURIER TRANSFORMS 

The quantities with which we have to deal in physical situations usually 
turn up naturally as functions of space and time. For example, the state or 
motion of a flight vehicle is a function of time, and the velocity of the atmos- 
phere is a function of three space coordinates and time. It has been found 
to be very advantageous in many problems of analysis to abandon this 
"natural" form of the functions, and to work instead with certain "integral 
transforms" of them. 



- 
o Table 2.1 

a No real distinction is made in the literature between Fourier integrals and Fourier transforms. The convention adopted here makes 
the inverse of the former the limit of the Fourier series as T -t w ,  and the latter a special case of the one-sided Laplace transform in 
which the domain is altered and s is imaginary. 

x ( t )  defined 
in domain 

Fourier Series 

- T < t < T  

One-Sided 
Fourier Integrala Fourier Transforma Laplace Transform 

- w ( t < w  - w < t < w  O < t < w  

I I" C ( w )  = - ~ ( t ) e - ~ - ~  dt X ( w )  = 
277 -w  

( 2 . 3 3 )  (2 .3 , s )  
- 

C(w)eimt  d o  x ( t )  = - X(w)e iwt  d o  x ( t )  I" 2?r -a 

(2.3,4) (2.3,6) ( 2 . 3 4  

x(t)e-inwot dt 

Inverse 

(2 .3 ,1)  
- - 

m 

x(1) = 2: Cneinwot 
n=-m 

( 2 . 3 3 )  
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DEFINITIONS 

Table 2.1 presents the common one-dimensional transforms of a function 
x(t) and the companion "inversion formulae" or "reciprocal relations" that 
give the "natural" function in terms of its transform. 

Multidimensional transforms are formed by successive application of these 
operations. (An example of this is given in Chapter 13.) 

Before proceeding further with the discussion of Table 2.1, i t  is expedient 
to introduce here the step and impulse functions, which occur in the following 
tables of transforms. 

The unit step function is (see Fig. 2.1) 

FIG. 2.1 Unit step function. 

It has the values 

The impulse function or delta function (more properly, the Dirac "dis- 
tribution") (see Fig. 2.2) is defined to bet 

a(t - T)  = lim f (a, t ,  T) 
€-+O 

where f ( ~ ,  t, T) is for E > 0 a continuous function having the value zero 
except in the interval T < t < T + a and such that its integral is unity, i.e. 

f (a, t ,  T) dt = 1 JTT+€ 
t The limit in (2.3,lO) has a rigorous meaning in the sense of distributions, despite the 

fact that it does not exist in the classical sense. 
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Fra. 2.2 The impulse function. 

It  follows that 

and hence that 

When the T is omitted from (2.3,9) and (2.3,10) it is assumed to be zero 
(as in Table 2.2, item 2). 

Table 2.2 

Some Fourier Transform Pairs 

1 
2 
3 
4 
5 
6 
7 

8 

6( t  - T )  
6 ( t )  
eint 

1 
cos Qt 
sin Qt 

i sgn t 

I ( t )  

X ( w )  

eioT 

1 
2.rr a ( w  - a)  

2, 6 ( w )  
.rr[6(w + Q )  + S(w - Q ) ]  
i ~ [ 6 ( w  + Q )  - 6 ( 0  - Q ) ]  

1 - 
i w  

1 
- + T 6 ( ~ )  
i w  
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In  the first column of Table 2.1 is given the complex form of the Fourier 
series for describing a function in the finite r6nge -T to T, in terms of 
fundamental circular frequency co, = n / T .  The coefficients Cn are related 
to those of the real Fourier series 

x( t )  = 2 ( A ,  cos noot + Bn sin nwot) 
n=O 

( a )  
(2.3,12) 

and the coefficients An and Bn are given by 

T 
A. = A J x(t)  cos nwot dt 

T -T 
T 

Bn = 1 J x( t )  sin nwot dt 
T -T 

(4 

The amplitude of the spectral component of frequency nw, is 

When T + co, the Fourier series representation of a function x(t) passes 
over formally to the Fourier integral representation, as given in the second 
column. In  this limiting process 

Cn nw, -+ w,  and C ( w )  = lim - (2.3,13) 
o o + o  Oo 

The Fourier transform that follows in the third column is essentially the 
same as the Fourier integral, with trivial differences in notation and the 
factor 11277. In  some definitions, both the transform and its inverse have - 
the factor 11 J2n .  Some useful Fourier transforms are presented in Table 2.2. 

From one mathematical viewpoint, C ( w )  and X ( o )  do not exist as point 
functions of w for functions x(t) that do not vanish at  co. This is evidently 
the case for items 3 to 8 of Table 2.2. However, from the theory of distri- 
butions, these transform pairs, some of which contain the singular 6 function, 
are valid ones (see ref. 2.3). Items 1 and 2 are easily verified by substituting 
x(t)  into (2.3,5) and items 3 to 6 by substituting X ( o )  into (2.3,6). Formal 
integration of x(t)  in item 7 produces the X ( w )  shown plus a periodic term 
of infinite frequency. The latter has no effect on the integral of X(co), which 
over any range d o  > O is ( l l iw )  dco. Item 8 is obtained by adding item 7 to 
3 of item 4. The one-sided Laplace transform, in the fourth column of Table 
2.1, is seen to differ from the Fourier transform in the domain of t  and in 
the fact that the complex number s replaces the imaginary number iw .  
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The two notations shown in (2.3,7) are used interchangeably. The curve c on 
which the line integral is taken in the inverse Laplace transform (2.3,8) is an 
infinite line parallel to the imaginary axis and lying to the right of all the 
poles of Z(s). If its poles all lie in the left half-plane then c may be the imagi- 
nary axis and (2.3,8) reduces exactly to (2.3,6). 

ONE-SIDED LAPLACE TRANSFORM? 

The Laplace transform is a major conceptual and analytical tool of system 
theory, and hence we explore its properties in more detail below. Table 2.3 
lists the Laplace transforms of a number of commonly occurring functions. 
It should be noted that (i) the value of the function for t < 0 is not relevant 
to Z(s) and (ii) that the integral (2.3,7) may diverge for some x(t) in combi- 
nation with some values of s, in which case Z(s) does not exist. This re- 
striction is weak, and excludes few cases of interest to engineers. (iii) When 
the function is zero for t < 0, the Fourier transform is obtained from the 
Laplace transform by replacing s by iw.  

TRANSFORMS OF DERIVATIVES 

Given the function x(t), the transforms of its derivatives can be found 
from (2.3,7). 

When xecst -+ 0 as t -+ co (only this case is considered), then 

where x(0) is the value of x(t) when t = 0.: The process may be repeated 
to find the higher derivatives by replacing x(t) in (2.3,14) by ?(t) ,  and so on. 
The result is 

i. In the two-sided Laplaoe transform, the lower limit of the integral is - co instead 
of zero. 

$ To avoid ambiguity when dealing with step functions, t = 0 should always be 
interpreted as t = Of. 



Table 2.3 
Laplace Transforms 

1 
2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

x ( t )  

W )  
s ( t  - T )  

1 or 1 (t) 

l ( t  - T )  

f ( t - T ) l ( t - T )  

t 

tn-1 

(n - I ) !  

eat 

sin at 

cos at 

teat 

tn-1 
eat 

(n - I)! 

eat sin bt 

eat cos bt 

sinh at 

cosh at 

eat sinh bt 

eat cosh bt 

eatx(t) 

Z ( s )  

1 
,-ST 

1 - 
s 

e-sT 
- 

8 

e A T 9 [ f  (t)l  
1 - 
s2 

1 - 
sn 

1 - 
s - a  

a 

$2 + a2 

s 

s2 + a2 

1 

( s  - 

1 

( s  - a)n 

b 

( s  - + b2 

s - a  

( s  - + b2 

a 

s2 - a2 

S 

$2 - a2 

b 

( s  - - b2 

s - a  

( s  - a)% - b2 

sZ(s) - x(0)  

Z(S - a )  
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TRANSFORM OF AN INTEGRAL 

The transform of an integral can readily be found from that derived above 
for a derivative. Let the integral be 

y = x( t )  at S 
and let it be required to find g(s). By differentiating with respect to t ,  we get 

whence 

and 1 - 1 
= - 8 4 s )  + - S y(0) 

EXTREME VALUE THEOREMS 

Equation (2.3,14) may be rewritten as 

-x(o) + sa(s) =[e-stg(t) dt 

= lim LTeestk(t) dt 
T - m  

We now take the limit s + 0 while T is held constant, i.e. 

T 
-2(0) + lim s2(s) = lim lim eWstk(t) dt 

s+o T-+wSo S-o 

Hence lim sz(s)  = lim x ( T )  
s-to T-a, 

This result, known as the jinal value theorem, provides a ready means for 
determining the asymptotic value of x(t)  for large times from the value of its 
Laplace transform. 

In  a similar way, by taking the limit s + co at constant T, the integral 
vanishes for all finite 6(t)  and we get the initial value theorem. 

lim s?(s) = x(0) 
S+ w 
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2.4 APPLICATION TO DIFFERENTIAL EQUATIONS 

The Laplace transform finds one of its most important uses in the theory 
of linear differential equations. The commonest application in airplane 
dynamics is to ordinary equations with constant coefficients. The technique 
for the general case is given in Sec. 3.2. Here we illustrate it with the simple 
but important example of a spring-mass-damper system acted on by an 
external force (Fig. 2.3). The differential equation of the system is 

2<wn is the viscous resistance per unit mass, c/m, w,2 is the spring rate per 
unit mass, k/m, and f ( t )  is the external force per unit mass. The Laplace 

(Equilibrium position 

Viscous damper, c 

I 

FIG. 2.3 Linear second-order system: mx = F - kx - ck. 

transform of (2 .4 , l )  is formed by multiplying through by ecst and integrating 
term by term from zero to infinity. This gives 

Upon using the results of Sec. 2.3, this equation may be written 

The original differential equation (2 .4 , l )  has been converted by the trans- 
formation into the algebraic equation (2.4,3) which is easily solved (2.4,4) 
to find the transform of the unknown function. In the numerator of the 
right-hand side of (2.4,4) we find a term dependent on the excitation (f), 
and terms dependent on the initial conditions [2(O) and x(O)]. The denomi- 
nator is the characteristic polynominal of the system. As exemplified here, 
finding the Laplace transform of the desired solution x(t)  is usually a very 
simple process. The heart of the problem is the passage from the transform 
Z(s) to the function x(t).  Methods for carrying out the inverse transformation 
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are described in Sec. 2.5. Before proceeding to these, however, some general 
comments on the method are in order. 

One of the advantages of solving differential equations by the Laplace 
transform is that the initial conditions are automatically taken into account. 
When the inverse transformation of (2.4,4) is carried out, the solution 
applies for the given forcing function f(t) and the given initial conditions. 
By contrast, when other methods are used, a general solution is usually 
obtained which has in it a number of arbitrary constants. These must sub- 
sequently be fitted to the initial conditions. This process, although simple in 
principle, becomes extremely tedious for systems of order higher than the 
third. A second convenience made possible by the transform method is 
that in systems of many degrees of freedom, represented by simultaneous 
differential equations, the solution for any one variable may be found 
independently of the others. 

2.5 METHODS FOR THE INVERSE TRANSFORMATION 

THE USE OF TABLES OF TRANSFORMS 

Extensive tables of transforms (like Table 2.3) have been published (see 
Bibliography) which are useful in carrying out the inverse process. When the 
transform involved can be found in the tables, the function x(t) is obtained 
directly. 

THE METHOD OF PARTIAL FRACTIONS 

In  some cases i t  is convenient to expand the transform Z(s) in partial 
fractions, so that the elements are all simple ones like those in Table 2.3. 
The function x(t) can then be obtained simply from the table. We shall 
demonstrate this procedure with an example. Let the second-order system 
of Sec. 2.4 be initially quiescent, i.e. x(0) = 0, and x(0) = 0, and let it be 
acted upon by a constant unit force applied a t  time t = 0. Then f (t) = l ( t ) ,  
andf(s) = 11s (see Table 2.3). Prom (2.4,4), we find that 

Let us assume that the system is aperiodic: i.e. that 5 > 1. Then the roots 
of the characteristic equation are real and equal to 
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where n = -&on 

cot = wn(f2 - 1 ) M  

The denominator of (2.5,l) can be written in factored form so that 

Now let (2.5,3) be expanded in partial fractions, 

By the usual method of equating (2.5,3) and (2.5,4), we find 

Therefore 

By comparing these three terms with items 3 and 8 of Table 2.3, we may 
write down the solution immediately as 

HEAVlSlDE EXPANSION THEOREM 

When the transform is a ratio of two polynomials in s, the method of 
partial fractions can be generalized. Let 
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where N(s )  and D(s) are polynomials, and the degree of D(s) is higher than 
that of N(s).  Let the roots of the characteristic equation D(s) = 0 be a,, so 
that 

D(s) = (s  - a,)(s - a,) . . . (s  - an) 

Then the inverse of the transform is 

The effect of the factor ( s  - a,) in the numerator is to cancel out the same 
factor of the denominator. The substitutions = a, is then made in the reduced 
expression. 

I n  applying this theorem to (2.5,3), we have the three roots a, = 0, 
a, = Al, a, = A,, and N(s )  = 1. With these roots, (2.5,5) follow-s immediately 
from (2.5,6). 

REPEATED ROOTS 

When two or more of the roots are the same, then the expansion theorem 
given above fails. For then, after canceling one of the repeated factors from 
D(s) by the factor (s  - a,) of the numerator, still another remains and 
becomes zero when s is set equal to a,. Some particular cases of equal roots 
are shown in Table 2.3, items 6 , 7 , l l ,  and 12. The method of partial fractions, 
coupled with these entries in the table, suffices to deal conveniently with 
most cases encountered in stability and control work. However, for cases 
not conveniently handled in this way, a general formula is available for 
dealing with repeated roots. Equation (2.5,6) is used to find that part of 
the solution which corresponds to single roots. To this is added the solution 
corresponding to each multiple factor (s  - a,)" of D(s). This is given by 

s - u , )~N(s )  d ( s  - aT)'N(s) 
teart+ - 1) s r t  for m = z [' D(s) a Ids[ D(s)  r=ar 

(2.5,7) 
and by 

I) tm-n-l 
eart for m > 2 

s=a, n ! ( m  - n - I)! 

2.6 RANDOM PROCESS THEORY 

There are important problems in flight dynamics that involve the response 
of systems to random inputs. Examples are the motion of an airplane in 
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atmospheric turbulence, aeroelastic buffeting of the tail when it is in the 
wing wake, and the response of an automatically controlled vehicle to random 
noise in the command signal. The method of describing these random 
functions is the heart of the engineering problem, and determines which 
features of the input and the response are singled out for attention. The 
treatment of such functions is the subject matter of generalized harmonic 
analysis. It is not our intention to present a rigorous treatment of this 
involved subject here. However, a few of the more important aspects are 
discussed, with emphasis on the physical interpretation. 

STATIONARY RANDOM VARIABLE 

Consider a random variable u( t ) ,  as shown in Fig. 2.4. The average value of 
u( t )  over the interval (t,  - T )  to (t,  + T )  depends on the mid-time t,, and 

FIG. 2.4 Random variable. 

the interval width, 

The function is said to have a stationary mean value ii if the limit of E(t,, T )  
as T -+ oo is independent of t ,  : i.e. 

ii = lim - u ( t )  dt 
T+ m 2T St'" t,-T 

If, in addition, all other statistical properties of u( t )  are independent oft,, 
then it is a stationary random variable. We shall be concerned here only with 
such functions, and, moreover, only with the deviation v(t)  from the mean 
(see Fig. 2.4). The average value of v(t)  is zero. 
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ENSEMBLE AVERAGE 

In the above discussion, the time average of a single function was used. 
Another important kind of average is the ensemble average. Imagine that 
the physical situation that produced the random variable of Fig. 2.4 has 
been repeated many times, so that a large number of records are available 
as in Fig. 2.5. 

Sample 1 I 

F I ~ .  2.5 Ensemble of random variables. 
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The ensemble average corresp6nding to the particular time tl is expressed 
in terms of the samples u,(tl) as 

1 
(u(l l))  = lim (u(t,, n ) )  = lim - [ul(tl) + u,(tl) - . . u,(t,)] (2.6,3) 

n+ m n - m n  

If the process is stationary, (u(t l))  = (u),  independent oft,. The process is 
said to be ergodic if the ensemble and time averages are the same, i.e. (u )  = 6. 
This will be the case, for example, if the records are obtained from a single 
physical system with random starting conditions. In this book we are con- 
cerned only with stationary ergodic processes. 

HARMONIC ANALYSIS OF v ( t )  

The deviation v(t)  may be represented over the interval - T  to T (t ,  
having been set equal to zero) by the real Fourier series (2.3,12), or by its 
complex counterpart (2.3,2). Since v(t)  has a zero mean, then from (2.3,12c) 
A,  = 0. Since (2.3,lZd) shows that B, also is zero, it follows from (2.3,123) 
that C, = 0 too. The Fourier series representation consists of replacing the 
actual function over the specified interval by the sum of an infinite set of 
sine and cosine waves-i.e. we have a spectral representation of x(t). The 
amplitudes and frequencies of the individual components can be portrayed 
by a line spectrum, as in Fig. 2.6. The lines are uniformly spaced at the interval 
w,  = m/T, the fundamental frequency corresponding to the interval 2T.  

The function described by the Fourier series is periodic, with period 2T,  
while the random function we wish to represent is not periodic. Nevertheless, 
a good approximation to it is obtained by taking a very large interval 2T.  
This makes the interval w,  very small, and the spectrum lines become more 
densely packed. 

If this procedure is carried to the limit T --+ oo, the coefficients A,, B,, C ,  
all tend to zero, and this method of spectral representation of x(t) fails. This 
limiting process is just that which leads to the Fourier integral (see 
2.3,4 to 2.3,6) with the limiting value of C,  leading to C ( o )  as shown by 
(2.3,13). A random variable over the range - oo < t < oo does not satisfy 
the condition for C(w)  to exist as a point function of w .  Nevertheless, over 
any infinitesimal dw there is a well-defined average value, which allows a 
proper representation in the form of the Fourier-Stieltjes integral 

It may be regarded simply as the limit of the sum (2.3,2) with nw, -+ w 
and C, -+ dc. Equation (2.6,4) states that we may conceive of the function 
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FIG. 2.6 Line spectra of a function. 

v(t) as being made up of an infinite sum of elementary spectral components, 
each of bandwidth do, of the form eiwt, i.e. sinusoidal and of amplitude dc. 
If the derivative dcldw existed, it would be the C(o) of (2.3,Q). 

CORRELATION FUNCTION 

The correlation function (or covariance) of two functions v,(t) and v2(t) is 
d e h e d  as 

&,(T) = (vl(t)vZ(t + 7)) (2.65) 

i.e. as the average (ensemble or time) of the product of the two variables 
with time separation T. If vl(t) = v2(t) it is called the autocorrelation, otherwise 
it is the cross-correlation. If T = 0 (2.6,5) reduces to 
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and the autocorrelation to 
- 

Rll(0) = (v?) = v12 

A nondimensional form of R ( T )  is the correlation coefficient 

where T indicates the root-mean-square (rms) value, Js. It is obviously 
true from symmetry considerations that, for stationary processes, R,,(T) = 
Rll(-T), i.e. the autocorrelation is an even function of T .  It is also generally 
true that for random variables, Rl2(7) -+ 0 as T -+ CO. 

It is clear from the definition (2.6,5) that interchanging the order of v, 
and v2 is equivalent to changing the sign of T.  That is 

If R12 is an even function of T ,  then R12(-r) = R12(-7) and Rl2(7) = R 2 1 ( ~ ) .  
If it is an odd function of T, then R12(7) = - R12(-7). 

The most general case is a sum of the form 

SPECTRUM FUNCTION 

The spectrum function is by definition the Fourier integral of R12(7), i.e. 

and exists for all random variables in view of the vanishing of R as T -+ W. 

It follows from the inversion formula (2.3,4) that 

R12(r) =~->12(w)rur dw (2.6,10) 

To obtain the physical interpretation of the spectrum function, consider a 
special case of (2.6,10), i.e. 

Rll(0) = j - 3 1 1 ( w )  dm 

or by virtue of (2.6,7) 
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FIG. 2.7 Spectrum function. 

Thus the area under the curve of the spectrum function gives the mean- 
square value of the random variable, and the area @(o)  d o  gives the con- 
tribution of the elemental bandwidth d o  (see Fig. 2.7). 

I n  order to see the connection between the spectrum function and the 
harmonic analysis, consider the mean square of a function represented by a 
Fourier series, i.e. 

= 1 ST ( 5  cos moot + sin noot 2T -T n=o 

x ( $ A, cos moot + B, sin moot 
m=O 

Because of the orthogonality property of the trigonometric functions, all 
the integrals vanish except those containing An2 and Bn2, SO that 

From (2.3,12b), An2 + Bn2 = 4 ICn12, whence 

where the * denotes, as usual, the conjugate complex number. 
The physical significance of 1CnI2 is clear. It is the contribution to 3 

that comes from the spectral component having the frequency noo. We may 
rewrite this contribution as 
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Now writing wo = 6w and interpreting 6 3  as the contribution from the 
band width (n - $)coo I; o 5 (n + $)coo, we have 

The summation of these contributions for all n is & and by comparison 
with (2.6,11) we may identify the spectral density as 

CZcn Bl1(o)) = lim - 
Y 0 + O  w, 

More generally, for the cross spectrum of ui and v j ;  

C?nci, aij(o) = lim - 
mo+O Oo 

Now in many physical processes v2 can be identified with instantaneous 
power, as when v is the current in a resistive wire or the pressure in a plane 
acoustic wave. Generalizing from such examples, v2(t) is often called the 
instantaneous power, 3 the average power, and @,,(o) the power spectral 
density. By analogy @lz(o )  is often termed the cross-power spectral density. 

From (2.6,9), and the symmetry properties of R12 given by (2.6,86), and 
by noting that the real and imaginary parts of e-io' are also respectively 
even and odd in T i t  follows easily that 

@ 1 2 ( ~ )  = @Z*l(o) (2.6,17a) 

The result given in (2.6,17) is sometimes expressed in terms of Fourier trans- 
forms of truncated functions as follows. Let v,(t; T )  denote the truncated 
function 

vi( t;T)  = v,(t) for 1 t 1 I; T 

v , ( t ;T)=O f o r I t l > T  (2.6,18) 

T 
and let V i ( o ;  T )  =I-:Jt; T ) e i Y t  dt =12(t)e-iYt dl (2.6,19) 

be the associated Fourier transform. Comparing (2.6,19) with (2.3,l) in 
Table 2.1 (o = no,) we see that 

Hence from (2.6,17) we get 
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On substitution of wo = TIT and o = no,, this becomes finally, 

1 aii(o) = lim - V r ( o ;  T)V,(w; T )  
T - ~  4.rrT 

The special case of power spectral density is given by 

1 
<oii(o) = lim - IVi(w; T)I2  (2.6,22a) 

~ - t m  ~ T T  

CORRELATION AND SPECTRUM OF A SlNUSOlD 

The autocorrelation of a sine wave of amplitude a and frequency Q is 
given by 

T 
R ( r )  = lim "1 I sin Qt sin (Qt + Qr) dt 

T - t m  2T -T 

After integrating and taking the limit, the result is the cosine wave 

It follows that the spectrum function is P / ~ T  times the Fourier transform of 
(2.6,23), which from Table 2.2 is 

a2 
@ ( o )  = - [ d ( o  + a) + d(w - Q ) ]  (2.6,23a) 

4 

i.e. a pair of spikes at  frequencies &Q. 

PROBABILITY PROPERTIES OF RANDOM VARIABLES 

An important goal in the study of random processes is to predict the 
probability of a given event--for example, in flight through turbulence, the 
occurrence of a given bank angle, or vertical acceleration. In  order to achieve 
this aim, more information is needed than has been provided above in the 
spectral representation of the process and we must go to a probabilistic 
description. 

Consider an infinite set of values of v(t,) sampled over an infinite ensemble 
of the function. The amplitude distribution or probability density of this set 
is then expressed by the function f (v ) ,  Pig. 2.8a, defined such that the 
lirn f (v )  Av is the fraction of all the samples that fall in the range Av. 

Av-0 

This fraction is then given by the area of the strip shown. It follows that 
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Fra. 2.8 Distribution functions. (a) Probability density function. (b )  Cumulative 
distribution. 

The cumulative distribution is given by 

and is illustrated in Fig. 2.8b. The ordinate at P gives the fraction of all 
the samples that have values v < v,. The distribution that we usually have 
to  deal with in turbulence and noise is the normal or Gaussian distribution, 
given by 

where o is the standard deviation or variance of v, and is exactly the rms 
value used in (2.6,s) o = z  (2.6,26) 

Note that o can be computed from either the autocorrelation (2.6,7) or the 
spectrum function (2.6,ll).  

MEAN VALUE OF A FUNCTION OF v 

Let g(v) be any function of v. Then if we calculate all the values g, associated 
with all the samples v,(t,) referred to above we can obtain the ensemble 
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mean (9). Now it is clear that of all the samples the fraction that falls in the 
infinitesimal range g, I g I gi + Ag corresponding to the range of v 

vi v < v, + Av is f(v,) Av. If now we divide the whole range of g into 
such equal intervals Ag the mean of g is clearly 

Equation (2.6,27) is of fundamental importance in the theory of probability. 
From i t  there follow a t  once the formulae for the moments of the distri- 
butions : 

(v) =Ef (v) dv = 1st moment off (2.6,28a) 

or (v2) = v2f(v) dv = 2nd moment off L', (2.6,28b) 

00 

(vn) = 12" (v) dv = nth moment off (2.6,28c) 

For the particular case we have been discussing, (v) = (3 and (vZ) = 0,. 

JOINT PROBABILITY 

Let v,(t) and v,(t) be two random variables, with probability distributions 
fl(vl) and f,(vZ). The joint probability distribution is denoted f(v,, v,), and is 
defined like f(v). Thus f(vl, v,) A S  is the fraction of an infinite ensemble 
of pairs (v,, v,) that fall in the area AS of the v,, v, plane (see Fig. 2.9). 
If v, and v, are independent variables, i.e. if the probability f(vl) is not 
dependent in any way on v,, and vice versa, the joint probability is simply 
the product of the separate probabilities 

f (~19 VZ) = f1(~1)f2(vz) (2.6,29) 

From the theorem for the mean, (2.6,27) the correlation of two variables can 
be related to the joint probability. Thus 

For independent variables, we may use (2.6,29) in (2.6,30) to get 
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FIG. 2.9 Bivariate distribution. 

and is zero if either variable has a zero mean. Thus statistical independence 
implies zero correlation, although the reverse in not generally true. 

The general form for the joint probability of variables that are separately 
normally distributed, and that are not necessarily independent is 

1 
f ( V I ,  V Z  . . . vn) = exp (- inc jviv j )  (2.6,31) 

( 2 ~ ) ~ "  IMIx 

where IMI is the determinant of the matrix of second moments: 

For two variables this yields the bivariate normal distribution for which 
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If v, and v2 are the values of v(t)  a t  two times, e.g. 

v, = v(t)  

v2 = v(t + 7 )  

o , R12 = R(T) [see (2.6,5)] and the joint probability is a Then a12 = a22 = 

function of the parameter T, viz. 

(2.6,33) 

The inverse relation, from the theorem for the mean value is 

As shown in Fig. 2.9, the principal axes of the figure formed by the contours 
of constant f for given R ( T )  are inclined a t  45'. The contours themselves 
are ellipses. 

JOINT DISTRIBUTION OF A FUNCTION AND ITS SLOPE 

We shall require the joint distribution function f  (v ,  d ;  0 )  for a function 
v( t )  that has a normal distribution. The correlation of v and d is 

R,,(r) = lim - J v(t)d(t + T )  dt 
~ - + m  2T -T 

I n  particular, when T = 0 

R,,(o) = lim J v * dt 
T - t m  2T -T dt 

ST 1 
= lim - ldv2 = lim - [vYT)  - v2(-T)]  (2.6,35) 

T-W 2T -T" ~ - t m  41' 

which is zero for a finite stationary variable. I t  follows therefore from (2.6,33) 
that f (v ,  d ;  0 )  reduces to the product form of two statistically independent 
functions, i.e. 

f (v ,  d ;  0 )  = f l (v)  f 2 ( 4  
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To evaluate f we need only the two variances. ol = C we have pointed out 
previously can be found from either Rll(?-) or Qll(w). TO find o,  = we 
have recourse to the spectral representation (2.6,4), from which it follows that 

From this we deduce that the complex amplitude of a spectral component 
of d is iw times the amplitude of the same component of v. Prom (2.6,15) it 
then follows that the spectrum function for d is related to that for v by 

@,,(w) = m2@,,(w) 
and finally that 

Thus i t  appears that the basic information required in order to calculate 
f(v, d)  is the power spectral density of v ,  @,,(m). Prom it we can get both 
(v2) and ( d 2 )  and hence f(v, 6 ;  0). 

The autocorrelation of d can be related simply to that of v as follows. 
Consider the derivative of R ( T )  

Since the differential and averaging operations are commutative their order 
may be interchanged to give 

= (v(t)d(t + 7)) 
Now let ( t  + T) = U ,  SO that 

We now differentiate again a t  constant u, to get 
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ORDINATE-CROSSING RETURN PERIOD 

With reference to Fig. 2.10, let us define an "event" as a crossing of the 
random curve through the strip Av at v .  The time At associated with a single 
event that has a slope in the range Ad is 

During a total time T -+ oo, the portion spent in the domain Av, Ad of the 
(v,  d )  space is 

AT = Tf (v,  6 )  Av Ad 

Hence, the total number of events with slopes in the range Ad in the time T 

FIG. 2.10 Upward crossing at level v.  

must be ATlAt, and the average number per unit time is 

1 AT 
dN(v,  d )  = - - = lit] f (v,  d )  Ad 

T At 

On passing to the limit Av + 0 and integrating we get 

When (2.6,36) is substituted into (2.6,41) the result of integration is: 

and 

whence 
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FIU. 2.1 1 Return period. 

Since N ( v )  includes both upward and downward crossings, the average 
number of upward crossings, or "positive events" is 

N + ( V )  = IN(*)  L 4 e*2'2g1' (2.6,43) 
277 o, 

The average interval between positive events is called the return period. 

which is plotted in Pig. 2.11. 

DISTRIBUTION OF PEAKS 

It is observed that for the larger values of v most, but not all, local maxima 
are immediately preceded by a positive event as defined above. This is 
illustrated in Fig. 2.4 where the events are defined by the line I .  Thus (2.6,43) 
can also be interpreted as a good approximation to the number of peaks per 
unit time that are greater than v .  It follows that the distribution of peaks 
per unit time is given approximately by 

and has the form shown on Fig. 2.12. 



FIG. 2.12 Distribution of peaks per unit time. 

PROBABILITY OF A POSITIVE EVENT DURING TIME t ,  

We now wish to find the probability that a positive event, as defined above, 
will occur in a given time t,. Let t ,  be divided into a sequence of equal intervals 
At such that the follo~ving two conditions are met 

(i) At < r(v) 

(ii) The probability of an event during any particular interval At is in- 
dependent of whether an event has occurred in any previous interval. 
(See below for discussion of this condition.) 

Since N+(v) gives the average time density of events, then the probability 
of an event in At is (for At -a 0) 

At 
P(V, At) = AtN+(v) = - (2.6,46) 

r(v) 

and the probability that there will be no event in At is 

At 
q(v, At) = I - p = 1 - - 

~ ( 0 )  
(2.6,47) 

Hence the probability that there is no event in n successive intervals is, by 
virtue of condition (ii) above, 
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If a positive event is identified with "failure" of a system, then clearly 
q(v, n At) is the probability of  survival"^ for a'time t, = n At, i.e. 

Hence the probabi1it.y of failure is 

For large times t ,  (the usual practical case) n may be very large and the term 
in parentheses may be represented by its limit 

so that the survival probability is 

and the failure probability is 

This result is general, and can be applied for any stationary random process. 
If the process is the Gaussian one previously discussed, then r(v) is given 
by (2.6,44), and (2.6,513) becomes 

Equations (2.6,513) and (2.6,52) are plotted in Pig. 2.13. I t  should be noted 
that the probability of failure associated with t, = r is (1 - I/e) or 0.63, 
and that the curves in (b) fall rather steeply over a fairly narrow range of v. 
Equation (2.6,51a) is a particular case of the Poisson distribution, for zero 
events in a time t,. 

A more rigorous treatment of survival probability covering nonstationary and 
non-Gaussian processes is given by Rice and Beer (ref. 2.8) and is applied to launch 
vehicles by Beer and Lennox (ref. 2.9). 
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v/u1 
(c) 

FIG. 2.13 Failure probability. 

DISCUSSION OF CONDITION (ii) 

We return now to the condition of statistical independence of adjacent 
intervals. This implies that the joint probability f (v,, v,) = f (v,)f (v,) where 
v, and v, are values of the variable during two adjacent intervals A,t and 
A,t, as illustrated in Pig. 2.14. We saw [following (2.6,30)] that statistical 
independence implies zero correlation. In the present context we may infer 
statistical independence from zero correlation. Thus we require that 

the average being taken over the range 0 5 t' I At. Now if we define a 
characteristic correlation time by 
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as illustrated in Pig. 2.15, and require that At > T*, then it is evident that 
condition (2.6,53) will be satisfied. Since the present results will normally 
be of interest only for large r and large t,, this condition can be met while 
still keeping n very 1arge.t 

2.7 MACHINE COMPUTATION 

This section deals with a topic that does not belong to the theory of flight 
dynamics, but is of transcendent importance, overshadowing all else, when 
it comes to application of the theory. That topic is the use of computing 
machines for the solution of equations and the simulation of systems. 
Without them modern aerospace vehicles and missions could probably not 
be designed and analyzed a t  all within practical limitations; with them there 
is virtually no practical problem in flight dynamics that cannot be solved. 

Except when the most extreme simplifications are employed, the equations 
of flight dynamics are quite complicated, and considerable labor must be 
expended in their solution. The labor is especially heavy during the design 
and development of a new vehicle, for then the solutions must be repeated 
many times, with different values of the parameters that define the vehicle 
and the flight condition. The process is more or less continuous, in that, as 
the design progresses, changes are constantly made, improved estimates of 
the aerodynamic parameters become available from wind-tunnel testing, 
aeroelastic calculations are refined, and testing of control-system and guidance 
components provides accurate data on their performance. Recalculation is 
required a t  many stages to include these improvements in the data. The 
number of computing man-hours involved in this procedure for a modern 

For example, when applied to flight through turbulence, tl corresponds to the total 
distance flown, and T* corresponds to  the "scale" of the turbulence. 
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aerospace vehicle would be astronomical if all the computations had to be 
performed by hand (i.e. with slide rule or desk computer). 

In  addition to merely making it possible to carry out the minimum amount 
of analysis that is essential to the achievement of a successful design, the 
great speed and flexibility of computing machines have led to other important 
advantages. With them it is feasible to conduct elaborate design studies in 
which many parameters are varied in order to optimize the design, i.e. to 
find the best compromise between various conflicting requirements. Another 
advantage is that the analysis can be much more accurate, in that fewer 
simplifications and approximations need be made (e.g. more degrees of 
freedom can be retained). 

Among the most important points in this connection is the possibility of 
retaining nonlinearities in the equations. Adequate analytical methods of 
dealing with nonlinear systems either do not exist or are too cumbersome 
for routine application. By contrast, computing machines permit the intro- 
duction of squares and products of variables, transcendental functions, 
backlash (dead space), dry friction (stick-slip), experimental curves, and 
other nonlinear features with comparative ease. They go even further, in 
making possible the introduction into the computer setup of actual physical 
components, such as hydraulic or electric servos, control surfaces, human 
pilots, and autopilots. This technique is, of course, superior in accuracy 
to any analytical representation of the dynamic characteristics of these 
elements. The ultimate in this type of "computing" involves the use of the 
whole airplane in a ground test, with only the airframe aerodynamics 
simulated by the computer. A human pilot can be incorporated in such 
tests for maximum realism. A related development is the flight simulator 
as used for pilot training and research on handling qualities (see Chapter 12). 
It is basically a computer simulation of a given airplane, incorporating a 
replica of the cockpit and all the controls and instruments. The pilot "flying" 
the simulator experiences in a more or less realistic fashion the characteristic 
responses of the simulated vehicle. Such simulators or trainers have been 
used to great advantage in reducing the flight time required for pilot training 
on new vehicle types. 

Digital machine computation is, of course, part of the training of all 
engineering students, and we assume the necessary background in that sub- 
ject. Analog computation however is not so universally taught, and many 
students who come to the study of flight dynamics have had no prior ex- 
perience with it. These we refer to refs. 2.6, 2.7, and 2.12. As a further aid, 
one example of analog computation is presented rather fully in Sec. 10.2. 
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C H A P T E R  3 

3.1 CONCEPTS AND TERMINOLOGY 

The branch of modern engineering analysis known as system theory is 
highly relevant to the study of the flight of vehicles in the atmosphere and 
in space. The word system has long been current in such applications as 
" control system," "navigation system," and "hydraulic system." In our 
present context we identify the vehicle itself as a system, of which the 
above examples are subsidiary systems, or associated systems. 

We do not attempt to offer here a precise definition? of a system-suffice 
it to say that it is an element, or an interconnected set of elements that is 
clearly identifiable and that has a state defined by the values of a set of vari- 
ables that characterize its instantaneous condition. The elements may be 
physical objects or devices, or they may be purely mathematical, i.e. 
equations expressing relationships among the variables. In the case of a 
physical system, the governing equations may or may not be known. A 
set of equations that constitutes a mathematical model of a physical system, 
is a mathematical system that is a more or less faithful image of the physical 
system, depending on the assumptions and approximation contained therein. 
The set of n variables that defines the state of the system is the state vector, 

t See for example ref. 3.1, Sec. 1.10. 
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and the corresponding n-dimensional space is the state space. Some or all 
of the state variables, or quantities derived from them, are arbitrarily termed, 
according to the circumstances of the experiment or analysis, as outputs. 
The exact specification of a system is usually arbitrary, as will be seen in 
the following example; the "boundary" of the system under consideration 
in any given circumstance is chosen by the analyst or experimenter to suit 
his purpose. 

In  addition to the state variables, there is usually associated with a system 
a second set of variables called inputs. These are actions upon the system 
the physical origins of which are outside the system. Some of these are 
independent of the state of the system, being determined by processes 
entirely external to it; these are the nonautonomous inputs. Others, the 
autonomous inputs, have values fixed by those of the state variables them- 
selves, owing to internal interconnections or feedbacks, or a as result of 
environmental fields (e.g. gravity, aerodynamic, or electromagnetic) that 
produce reactions that are functions of the state variables. An output of one 
system may be an input to another, or to itself if there is a simple feedback. 
The state variables are unique functions of the nonautonomous inputs and 
of the initial conditions of the system. A system with only autonomous 
inputs is an autonomous system. 

Every system has, as well as its state variables and inputs, a set of system 
parameters that characterize the properties of its elements-e.g. areas 
masses, and inductances. When these are constant, or nearly so, it is con- 
venient to consider them as a separate set. On the other hand, if some of 
them vary substantially in a manner that depends on the state variables, 
they may usefully be transferred to the latter set. The problem of system 
design, after the general configuration has been established, is primarily one 
of optimization in the system parameter space. Still another set of parameters 
is that associated with the environment-e.g. atmospheric density, gravi- 
tational field, and radiation field. In  adaptive systems, some system parameters 
are made to be functions of the state variables and/or environmental param- 
eters in order to achieve acceptable performance over a wider range of 
operating conditions than would otherwise be possible. 

The following example uill serve to illustrate some of the above concepts. 

EXAMPLE 

Figure 3.1 shows a system S comprising a planar arrangement of rigid 
bodies m,, massless springs k,, viscous damper c, and an inductive displace- 
ment transducer T. (Its voltage is e(t) = const. x,.) The midpoint g of m,, 
and mass m,, are constrained to move vertically. The system, bounded by 
the dashed line, is made up of all theseseparate elements. The nonautonomous 
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FIU. 3.1 An example of a system. 

inputs are the arbitrary external forces fl  and f ,  acting on the masses and 
the state variables are the coordinates of the joints, x,(t), their velocities 
v,(t) = i,, and the voltage e(t) of the transducer. Any of this set might be 
taken as outputs. Here, however, the output happens to be e(t). If fl  and f, 
were zero, the system would be autonomous and capable only of free vibration 
associated with nonequilibrium initial conditions. The external reactions 
a t  the points of connection to the fixed base, a, b, d, h, and g are functions 
of the state variables xi and v,, and hence are autonomous inputs. The 
parameters of the system are the masses of m,, the stiffnesses of k,, the 
damping constant of c, the transducer constant, and the geometrical di- 
mensions. It should be pointed out that although there is a minimum number 
of coordinates (state variables xi and vi) required to specify the state of the 
system, eight in this example, this number may be arbitrarily increased by 
redundant variables if it is convenient to do so. For example, we might 
add the transducer output, the four accelerations ai = d,, and the forces in 
the springs, even though they are, by virtue of the physical laws governing 
the system, not independent of the x, and v,. (Indeed the mathematical 
statement of this dependence is the main ingredient in the formulation of 
the system equations.) The minimum number of state variables required is 
the order of the system. 

The arbitrariness of the choice of system, and its dependence on the aim 
of the investigation is illustrated by the fact that we might choose as a 
system for study any of the individual elements of X, or any of the subsystems 
obtained by combinations of them. Furthermore, the set of state variables 
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might be still further augmented by adding sudh items as the stresses and 
strains in m, and m,. 

Finally, the release of simplifying approximations such as rigidity of the 
bodies, and masslessness of the springs, would require further elaborate 
additions to the state variables. 

BLOCK DIAGRAM 

The inputloutput system relations are conveniently illustrated by the 
use of block diagrams, as in Fig. 3.2. Figure 3.2a is the overall system diagram 
showing inputs f, and f, and output e and Fig. 3.2b is the combined block 
diagram of the subsystems, showing the sort of interconnections and feed- 
backs that are typically encountered in real systems. 

Fra. 3.2 Block diagram. (a) Complete system. ( b )  Detailed block diagram. si = spring 
forces. d = damper force. ri = reaction forces. 
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LINEARITY AND TIME INVARIANCE 

A system is linear if its governing equations are linear in the state variables. 
I n  that case the time functions giving the state variables are simply pro- 
portional to the magnitude of nonautonomous input functions of given shape 
when the initial conditions are zero, and to the initial conditions if there 
are no nonautonomous inputs. If the parameters of the system and of the 
environment are constants, then the system is time invariant. The simplest 
class of systems is that which has both these properties-linearity and time 
invariance-and these can be completely analyzed by the available methods 
of linear mathematics. We shall denote these as linear/invariant systems. 
Departure from either of these conditions leads to mathematical problems 
for which there may be no general methods of solution apart from numerical 
computation. 

EQUILIBRIUM, CONTROL, AND STABILITY 

Equilibrium denotes a steady state of the system, one in which all the 
state variables are constant in time. The "motion" corresponding to equilib- 
rium is represented by a point in the state space. The nonautonomous 
inputs associated with equilibrium must be zero or constant, the zero case 
preferably corresponding to the equilibrium point at the origin. The usual 
way of changing the equilibrium state, i.e. of exercising control over the 
system is by means of the nonautonomous inputs, the appropriate subset 
of which can hence be termed the control vector, and the associated space the 
control space. The result of applying control is to cause the equilibrium point 
to move away from the origin in state space, and the locus of all its possible 
positions defines a region that is a map of the domain of the control vector 
in control space. The control is adequate only if this region contains all the 
desired operating states of the system (e.g. orientation angles and speeds of 
a flight vehicle). 

Stability embraces a class of concepts that, while readily appreciated 
intuitively, are not easily defined in a universal way. In the past, a common 
view of system stability has been that i t  is a property of the equilibrium 
state, as follows. Let a system be in equilibrium, and for convenience let 
the equilibrium point be chosen as the origin of state space. Now let the 
initial state for the autonomous system be at a point P (see Pig. 3.3a) in the 
immediate neighborhood of 0. Three possibilities exist for the subsequent 
motion, illustrated by the three trajectories a, b, and c in the figure. 

(a) The state point moves back to the origin. 
( b )  It remains finite but > O  for all subsequent time 
(c) It goes off to infinity. 
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The trajectory will of course, f ~ r  a given system, depend on the direction 
of OP in state space. For example, Fig. 3.3b shows the equilibrium of a ball 
on a saddle surface. It is evident that displacement in the x direction leads 
to a type (c) trajectory and displacement in the y direction (in the presence 
of damping) to one of type (a). In this view of stability, the equilibrium 
point would be said to be stable if only type (a) trajectories could occur 
regardless of the direction of OP, and unstable if type (c) trajectories could 
occur. The saddle point is therefore an unstable equilibrium. The question 
of the magnitude of OP must be considered as well. If the system is linear, 
the conclusion about stability is independent of the magnitude of OP, but 
if it is not the size of the initial disturbance (i.e. of OP) does matter. I t  may 
well be that the system is stable for small disturbances, but unstable for 
large ones, as illustrated in Fig. 3.3~. The initial states for which the origin is 
stable in such a case lie within some region W of the state space as illustrated 
in Fig. 3.3a, and this is the "region of stability of 0.'' 

More recently, the rediscovery of the work on stability by Lyapunov 
(ref. 3.2) (see also Sec. 3.5) has had a great influence on this subject. In the 
Lyapunov viewpoint, we speak not of the stability of a system, but of the 
stability of a particular solution of a system of equations. The solution may 
be quite general, for example the forced motion of a nonlinear time-varying 
system with particular initial conditions. Equilibrium is a special case of 
such a solution. In this special case the Lyapunov definition is as follows. 
Let 6 and E be the radii of two hyperspheres in state space with centers at 
the equilibrium point, symbolically represented in two dimensions in Fig. 
3.3d. These surfaces are such that for all initial states lying inside S, the 
subsequent solution lies for all time inside S,. Then the origin is a stable point 
if there exists a 6 > 0 for all E > 0, no matter how small E becomes. That is, 
the solution can be made arbitrarily small by choosing the initial conditions 
small enough. If the solutions tends ultimately to zero, then the origin is 
asymptotically stable. If, when 0 is asymptotically stable, there exists a 
region W such that all trajectories that originate within it decay to the 
origin, then W is a finite region of stability. This notion is identical with that 
previously described. If W is an infinite sphere then the origin is globally 
stable. Note that if a linear system is asymptotically stable it is also globally 
stable. This fact is somewhat academic since in nature "linear" systems 
always become nonlinear for "very large" state vectors. 

The Lyapunov condition for a region of stability W will be met whenever 
the solution is a "well-behaved" function of the initial conditions-that is, 
if axi(T)/axi(0) is finite in W for all i, j and T where x is the state vector. 
In  particular this must hold in the limit as T -+ co. 

A striking illustration of this point of view is afforded by the unstable 
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/ Region of no solutions 

FIG. 3.3 Stability of equilibrium. (a) Trajectories in state space. ( b )  Saddle point. 
(c) Finite region of stability. (d) Lyapunov definition of stability. (e) Illustrating 
discontinuity in solutions. ( f )  Limit cycle. 

system of Fig. 3.3e, in which a particle is free to slide without friction along 
a horizontal pointed ridge. The sides are infinite in the x and y directions. 
One solution, of course, is uniform rectilinear motion a t  speed U on the 
ridge (trajectory a).  If a small initial tangential velocity v in the downhill 
direction be added, the motion is a trajectory such as b. In  the limit as v + (a, 

the limiting trajectory is one like c, tangent to Ox a t  the origin. Thus there 
is a gap between a and c that contains no solutions a t  all for the given U 
even for finite times. If the top of the ridge were rounded off instead of 
pointed the solutions for all finite t would be continuous in v. However 
even in that case, as t -P cc the lim y/v -+ co, so that y(cc) is not a continuous 

v-ro 

function of v, and hence the basic solution a is unstable. 
When the solution to be investigated is not the simple one discussed above, 

i.e. equilibrium, the stability criterion is still that of continuity, as above. 
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Alternatively, the general case can be reduced to the particular case as 
follows. Let the system equation be 

and let the particular solution be x,(t). Now let the variation from x, asso- 
ciated with a change in the initial condition only be 

Y = x(t) - xo(t) ( 3 . 1 3  
Hence y = i ( t )  - i o ( t )  

= f (x ,  t )  - f(xo, t )  

or s = f(y + xo(t), t )  - f(xo(t), t )  (3.1,3) 

Since x,,(t) is presumed known, then (3.1,3) is an equation of the form 

for which y = 0 is the solution corresponding to x(t) = x,(t). Thus (3.1,4) 
defines a system that has an equilibrium point at the origin, and the discussion 
of its stability has already been given. In this way the stability of any tran- 
sient solution is reduced to that of stability of equilibrium. 

A particular kind of solution that is of interest is the limit cycle, illustrated 
again in two dimensions, in Fig. 3.3f by the closed curve C. It may be 
orbitally stable, in which case neighboring trajectories such as ( b )  are 
asymptotic to it, or unstable, in which case neighboring trajectories such as 
(a)  starting arbitrarily close to C, never come back to it. 

Finally, we should remark that Lyapunov's definition is concerned only 
with variations in the initial conditions of a solution. Clearly there are two 
other important practical cases: (1 )  stability with respect to perturbations 
in the input, and (2 )  stability with respect to system or environmental 
parameters. Stability with respect to perturbations in the input or the system 
parameters can be defined in a manner quite analogous to that with respect 
to the initial conditions. 

3.2 TRANSFER FUNCTIONS 

System analysis frequently reduces to the calculation of system outputs 
for given inputs. A convenient and powerful tool in such analysis is the 
transfer function, a function G(s) of the Laplace transform variable s that 
relates a particular input x(t) and output y(t) as follows, 
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where (-) denotes the Laplace transform (see Sec. 2.3). So long as x(t) and 
y(t) are Laplace transformable the transfer function defined by (3.2,l) exists. 
However, i t  will in general be a function of the initial values of y and its 
derivatives, and moreover, for nonlinear and time-varying systems, of the 
particular input x(t) as well. Such a transfer function is of relatively little 
use. We can however obtain a unique function G(s) if (i) the system is linear 
and time invariant, and (ii) it is initially quiescent, i.e. at  rest at  the origin in 
state space with no inputs. We shall therefore restrict ourselves in the 
following to this special situation. (A companion concept, the describing 
function, useful for nonlinear systems is described in Sec. 3.5.) With a 
unique transfer function, the output y(t) for any input x(t) is found by taking 
the inverse Laplace transform of 

The transfer function is thus seen to be the mathematical embodiment of 
all the system characteristics relevant to the particular inputloutput pair. 
For linearlinvariant systems, we shall see below that the computation of 
G(s) is always possible in principle, and usually in practice. 

When, as required above, x(t) and y(t) are zero for t < 0, the Laplace 
and Fourier transforms are simply related, i.e. E(iw) = X ( m ) .  It follows that 

Sometimes it is G(iw) that is called the transfer function. 
With a multivariable system, there is more than one inputloutput pair. 

In that case, let Gij(s) be the transfer function that relates the output y,(t) 
to the input xj(t). All the inputloutput relations are then given by 

or 

where 

is an n x m matrix associated with n outputs and m inputs. It need not be 
square since one output can be influenced by any number of inputs and 
vice versa. Note from (3.2,3a) that 
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STATIC GAIN 

Consider the output y(t) that results from the unit-step input x(t) = l ( t ) .  
Prom Table 2.3, item 3, the transform of the input is 

and hence 

The final value theorem (2.3,17) therefore gives 

lim y ( t )  = lim sjj(s) = lim G(s) 
t'ao s- to  s - ro  

This limit is the static gain, K ,  so that 

K = lim G(s) 
s- to  

EXAMPLE 

Let us find the transfer function of the second-order system of Fig. 2.3. 
The governing differential equation is (2.4,1), in which f (t) is the input and 
x(t) is the output. The Laplace transform is (2.4,3). Since the initial con- 
ditions x(0) and x(0) are specified to be zero, then 

3(s)(s2 f 2 5 ~ ~ ~  + con2) = P(s)  
or from (3.2, l)  

The static gain K is found to be 

P 
K = lim C(s) = - 

s-o 0 ,b2 

SYSTEMS IN SEDilES 

When two subsystems are in series, as in Pig. 3.4, the overall transfer 
function is 

whence 
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FIG. 3.4 Systems in series. 

Similarly, for n subsystems in series, the result is 

SYSTEM WITH FEEDBACK 

Figure 3.5 shows a general feedback arrangement, containing two sub- 
systems. When used as a feedback controller, E is called the actuating signal,? 
G(s) the forward-path transfer function and H(s)  the feedback transfer 
function. As indicated E is the difference between x and x ,  so 

whence it follows easily that the overall transfer function is 

and the actuating-signal transfer function is 

FIG. 3.5 General feedback system. 

t The designation error is reserved for the difference x - y, the aim of such a control 
system being to  force y to be equal to x. 
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TRANSFER FUNCTIONS OF GENERAL LINEAR/INVARIANT SYSTEM 

The transfer functions of a physical system that exists and is available 
for testing can be found from experiment, by making suitable measurements 
of its inputs and outputs. Here we are concerned with obtaining the transfer 
function by analysis. The experimental method is based in any case on the 
analytical formalism that we develop in the following. The procedure begins, 
of course, with the application of the appropriate physical laws that govern 
the behavior of the system. When the complete set of equations that express 
these laws has been formulated, i t  will, for linearlinvariant systems, usually 
appear as a set of coupled differential equations of mixed order. A partic- 
ularly simple example (the second-order system) was given above, and it 
demonstrates what may be called the direct method of finding transfer 
functions. That is, form the Laplace transform of the system equations, just 
as they naturally occur, and solve for the appropriate ratios. We give a 
further illustration below for a pair of coupled second-order equations (a 
fourth-order system), such as might arise in the analysis of a double pendulum, 
or two massive particles on a stretched string, or two coupled L-R-C circuits, 
etc. The example equations are 

On forming the Laplace transforms, with 

the result is 2(s2 f a2s + a,) $. y(als2 + a,) = f l  
(3.2,12) 

"s2 + b3) + ?7(b1s2 + b % ~  + b*) = "f2 

which can readily be solved for the four required transfer functions. 
We rewrite (3 .2 ,12)  as 

and the solution is 
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where 

is the matrix of the four transfer functions that relate x and y outputs to 
fl and f, inputs. There are however two other state variables, making the 
required total of four, and consequently there are four more transfer functions 
to be found. The additional variables are the two rates 

The transforms of (3.2,16) with zero initial values are 

whence the four additional transfer functions are [see (3.2,3d)] 

and similarly 

Gvrl = sGyf , ;  Gufz = sGXf2; Gvfz = sGyf, 

An alternative procedure for finding the matrix of system transfer functions 
consists of putting the equations in the standard first-order form. Any nth- 
order system of linear equations can be expressed as a set of n first-order 
equations. Consider (3.2,lO) for example. By using (3.2,16) they become 

which together with (3.2,16) are the required four first-order equations. 
They are not yet in the standard form, however. For that, one first solves 
(3,2,18) for u and zj, which are linear functions of u, v, x, y, f,, and fi. Combining 
the result with (3.2,16) yields a matrix equation of the form 

where A is a 4 x 4 matrix, and C is a 4 x 2 matrix. (The determination of' 
A and C is left as an exercise for the reader.) 
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Equation (3.2,19) 
general linear system 

is an example of the canonical form, which for the 
is 

y = A y  + Cx (3.2,20) 

where y is the state n-vector and x the nonautonomous input r-vector. 
A (an n x n matrix) and B: (an n x r matrix) may in general be time depend- 
ent. Here however, we are confining the discussion to invariant systems, and 
hence the Laplace transform of (3.2,20) is simply, for y(0)  = 0 

where I is the identity matrix. It follows that 

From (3.2,3b) we can therefore identify G as 

It can in principle be evaluated whenever A and B: are known. 

3.3 AUTONOMOUS LlNEAR/INVAWIANT SYSTEMS 

The general equation for linearlinvariant systems is (3.2,20).  When the 
system is autonomous and hence has zero input it reduces to 

y = Ay (3.3911 

When the initial state vector is y(O), the Laplace transform of (3.3,B) is 

or (81 - A)? = y(0) 
Define 

B(s )  = SE - A 

s - a,, a . . 

- - 
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in which aii are the elements of A. B is called the characteristic matrix of the 
system. Equation (3.3,2) then becomes 

whence 7 = B-l(s)y(O) (3.3,4) 

where 
adj B B-1= - 

IBI 

By virtue of the definition of the adjoint matrix (ref. 2.1) it is evident that 
the elements of adj B and of IBI are polynomials in s. IBI is called the char- 
acteristic determinant, and its expansion 

is the characteristic polynomial. I t  is evident from (3.3,3) that f ( s )  is of the 
nth degree. Hence 

f ( 8 )  = sn + C,-~S~- '  + . . . co 
= ( s  - - 14 * . . ( S  - ln) (3.3,7) 

where 1, . . - An are the roots off ( s )  = 0, the characteristic equation. We now 
rewrite (3.3,4) as 

- adj B(s )  y(s)  = - . 
f ( 5 )  

~ ( 0 )  

The inversion theorem (2.5,6) can be applied to (3.3,8) for each element of 
7, and the column of these inverses is the inverse of f ( s ) ,  i.e. 

We now define the vector 

( S  - 1,) adj B ( s )  

s=A, 

and hence can write the general solution of (3.3,l) that satisfies the initial 
conditions as 

n 

Y( t )  = 2 y,ebt (3.3,lO) 
r=1 

n 

It follows that y(0) = 2 y,. Note also that by setting t = 0 in (3.3,9) the 
r=1 

summation therein is shown to be equal to the identity matrix I. 
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COMPACT FORM OF SOLUTION 

A more compact form of the solution is available. Define the exponential 
function of a matrix M by an infinite series (like the ordinary exponential 
of a scalar), i.e.t 

1 
e" = I + M + - M ~ + . - -  (3.3,11) 

2!  
It is evident then that 

Thus it can be verified by substitution that 

Y(t) = eAty(Q) 

is a solution of (3.3,P) that has the initial value y(0). 

EIGENVALUES AND EIGENVECTORS 

The roots 1, of the characteristic equations are known as eigenvalues, or 
characteristic values. Corresponding to each of them is a special set of initial 
conditions that lead to a specially simple solution in which only one term of 
(3.3,10) remains, i.e. 

where 
y(t ) = uTeht (a )  

Y(Q) = u, (b) 

Since the solution of the autonomous system corresponding to a given set 
of initial conditions is unique, then if (3.3,14a) is a possible solution (and 
we shall show that it is), then (3.3,14b) gives the unique set of initial con- 
ditions that produce it. The general solution (3.3,10) is seen to be a super- 
position of these special solutions. u, is the eigenvector corresponding to 4, 
and (3.3,14a) is the associated eigenfunction. Substitution of (3.3,14) into 
(3.3,1) gives 

For a discussion of the practical computation of eM see Appendix D-8 of ref. 3.1. 
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Since the expansion of (3.3,15) is a set of homogeneous algebraic equations 
in the unknowns ui, a nontrivial solution exists only if the determinant 
equals zero, i.e. if 

I B(1,) I = 0 (3.3,16) 

However, the 1, are the roots of the characteristic equation IB(s)l = 0, and 
hence the condition (3.3,16) is automatically met. The vectors u, are then 
any that satisfy (3.3,15). It should be noted that since the r.h.s. of (3.3,15) 
is zero, the multiplication of any eigenvector by a scalar produces another 
eigenvector that has the same "direction" but different magnitude. To find 
u, we observe that, from the definition of an inverse (3.3,5), 

adjB = B - ~ / B I  
Premultiplying by B yields 

Badj B = I B I I  = f(s)I (3.3,18) 

For any eigenvalue A,, we have f (1,) = 0, and hence 

B(I,) adj B(1,) = 0 (3.3,19) 

Since the null matrix has all its columns zero, then it follows that each 
column of adj B(A,) is a vector that satisfies (3.3,153). Hence any nonzero 
column of adj B(1,) (if there are more than one, they differ only by constant 
factors) is an eigenvector corresponding to 1,. The eigenvalues and eigen- 
vectors are the most important properties of autonomous systems. From 
them one can deduce everything required about its performance and stability. 
This is illustrated in detail for flight vehicles in Chapter 9. 

The a eigenvectors form the eigenmatrix 

u = [uluz - . - u,] = [uij] 

in which ui, is the ith component of the jth vector. 

ORTHOGONAL EIGENVECTORS 

When the matrix A is symmetric (not, unfortunately, a common occurrence 
in the equations of flight vehicles) the system is called self-adjoint, and 
the eigenvectors have the convenient special property of being orthogonal, 
or normal. That is, the scalar product of any vector with any other is zero, 
lee., 

u.Tu.= U . . U . =  0 i # j  (3.3,20) 

In  more general cases, when the system is not self-adjoint, and A is an 
arbitrary n x n matrix, the eigenvectors are neither real nor orthogonal. 
However, there still exists a reciprocal basis of the eigenvectors, i.e. a 
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set of n vectors vi orthonormal to the set ui, i.e. such that 

Thus the matrix V of the vectors vi evidently satisfies the condition 

and clearly 

i.e. the columns of V are the rows of PT-l. The question now naturally arises 
as to what system (the adjoint system) has vi as its eigenvectors, and 
whether its matrix, B say, has any relation to A. It can be shown that 
(ref. 3.1) B = AT, i.e. that the matrix of the system adjoint to A is AT 
and its eigenvectors are orthogonal to those of A. 

COMPUTATION OF EIGENVALUES AND EIGENVECTORS 

For low-order systems, the characteristic determinant can be directly 
expanded and the characteristic equation (3.3,7) written out. If n < 4, 
analytical solutions exist for the roots. For large-order systems the eigen- 
values and eigenvectors are computed from the system matrix A by digital 
machine methods (refs. 3.3, 3.4). A discussion of these methods and of their 
recommended spheres of application is beyond the scope of this volume. 
Suffice it to say that practical methods and computing routines are available 
in most computation centers for extracting the eigenvalues and eigenvectors 
for systems of very large order, even for n > 100. 

It is worthwhile describing one fairly direct approach to computation of 
eigenvectors. Consider (3.3,15b) as a homogeneous set of scalar equations 
with 2, known and the n components of u, as the unknowns. Now divide 
through all the equations by any one of the unknowns, say urn,, so that there 
results n equations for (n - 1) ratios ui,/urn,. By dropping any one of the 
equations and transposing the coefficients of urn, to the r.h.s., a complete set of 
(n - 1) equations is obtained for the (n - 1) ratios. These can be solved by 
any conventional method to yield the ratios of all the components of u,to urn,. 
The equations will of course have complex coefficients for complex eigen- 
values, and real coefficients for real eigenvalues. This process for a third- 
order system would go as follows: 
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After dividing by us, and dropping the third equation we get 

The solution of this set of equations gives the two required ratios in terms 
of which the eigenvector is [u1,/u3,, u2,/u3,, 11. There are two difficulties 
associated with this method. The first is that if u,, turns out to be very small 
relative to u,, and u2, the equations will be ill-conditioned, and a different 
choice for the component to divide by has to be made. The second is that 
when Z is complex, there are really two sets of equations to be solved for 
the real and imaginary parts of the ratios. 

Clearly the eigenvector corresponding to the conjugate eigenvalue 2: will 
be itself the conjugate of u,, so only one of the pair need be calculated. 

REPEATED ROOTS 

When the procedure given in the foregoing is applied to calculate eigen- 
vectors for cases of multiple roots of the characteristic equation, additional 
possibilities occur. (See refs. 3.3 and 2.2.) Let the multiple root occur at 
s = A, 

(i) If adj ]&(A,) is not a null matrix, then its nonzero columns give a 
single eigenvector, just as for distinct eigenvalues. I n  that case there 
is only one eigenvector for the multiple root. 

(ii) If adj B(1,) is null, and its first derivative d/ds adj B(s)l,=,n is not, 
then there are two linearly independent columns of the latter that 
give two independent eigenvectors. 

(iii) If the first derivative is also null, then higher derivatives will yield 
successively larger numbers of eigenvectors. 

EQUATIONS IN NONSTANDARD FORM 

It is not necessary, nor always more convenient, to work with the system 
equations in standard first-order form, as was done above. The characteristic 
equation can be found directly from the equations as they are initially 
formulated, the "natural" form. Consider (3.2,10) for example. The autono- 
mous equations are 

x + alg + a2aE + a3x + a4y = 0 
x + bly + b2y + b3x + b4y = 0 

(3.3,21) 
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Assume there is an eigenfunction solution like (3.3,14), i.e. 

When (3.3,22) is substituted into (3.3,21) the result is 

The square matrix of (3.3,23) is exactly the same as B in (3.2,13), 1 replacing 
s. Since (3.3,23) are homogeneous equations the determinant of B must be 
zero. Expanding it leads exactly to the correct characteristic equation, just 
as would be obtained from the standard first-order form. Equation (3.3,23) 
is of the same form as (3.3,15b) and the same argument for finding an 
eigenvector applies-i.e. a column (x(0), y(0)) that satisfies (3.3,23) is any 
nonvanishing column of adj B. To complete the eigenvector we need &(O! 
and y(0). These are simply, from (3.3,22), 

where il is the appropriate eigenvalue. 

CHARACTERISTIC OR NATURAL MODES 

Solutions of the kind given by (3.3,14) describe special simple motions 
called natural modes or simply modes of the system. If the eigenvectors are 
orthogonal, the modes are normal or orthogonal modes. When A is real, 
the modes are exponential in form, as in Fig. 3.6a and b-increasing in magni- 
tude for 1 positive, and diminishing for 1 negative. Thus 1 < 0 corresponds 
to stability, usually termed static stability in the aerospace vehicle context, 
and 1 > 0 corresponds to static instability, or divergence. The times to double 
or half of the starting value illustrated in the figure are given by 

When one A, is complex, for real matrices A, there is always a second that 
is its conjugate, and the conjugate pair, denoted (letting r = 1,2) 
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FIG. 3.6 Types of natural mocle. 

define an oscillatory mode of period T = 2413 as we shall now show. The 
sum of the two particular solutions (3.3,14) corresponding to the complex 
pair of roots is 

= ule(n+io)t + u2e(n-io)t 

where u, and u2 are the eigenvectors for the two A's. On factoring out ent 
we get 

y = ent(ulei"t + u2e-iot) (3.3,26) 

If the elements of the system matrix A are real, then the corresponding 
elements of u, and u2 always turn out to be conjugate complex pairs, i.e. 



64 Dynamics of atmospheric fight 

and (3.3,26) becomes 

y = ent(a cos cot + b sin cot) (3.3,27) 

where a = u,  + u: and b = i (u,  - u:) are real vectors. Equation (3.3,27) 
describes, for any particular state variable yi, an oscillatory variation that 
increases if n > 0 (dynamic instability, or divergent oscillation) and decreases 
(damped oscillation) if n < 0-see Fig. 3 . 6 ~  and d .  The initial condition 
corresponding to (3.3,27) is 

With reference to Fig. 3 . 6 ~  and d,  some useful measures of the rate of 
growth or decay of the oscillation are: 

Time to double or half: 

Cycles to double or half: 

Logarithmic decrement (log of ratio of successive peaks) : 

ent - 5 6 = log, - - -nT = 231 - 
en(t+T) J1- C 2  

In  the above equations, 

W ,  = (u2 + n2)5i, the "undamped" circular frequency 

5 = -n/con, the damping ratio 

One significance of the eigenvectors is seen to be that they determine the 
relative values of the state variables (the "direction" of the state vector in 
state space) in a characteristic anode. If the mode is nonperiodic, the eigen- 
vector defines a fixed line through the origin in state space, and the motion 
in the mode is given by that of a point moving exponently along this line. 
If the mode is oscillatory, the state vector is given by (33,271, and the locus 
of y is clearly a plane figure in the (a, b) plane through the origin. If n = 0, it 
is an ellipse, otherwise it is an increasing or decreasing elliptic spiral. The 
vectors a and b are twice the real and imaginary parts respectively of the 
complex eigenvector associated with the mode. I t  should be emphasized 
that these modes are special simple motions of the system that can occur if 
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the initial conditions are correctly chosen. In them all the variables change 
together in the same manner, i.e. have the same frequency and rate of growth 
or decay. It is instructive to consider the Argand diagram corresponding to 
(3.3,26). For any component yi we have 

which is depicted graphically in Fig. 3.6e, where ui, = luill eiq. The two 
vectors are conjugate, i.e. symmetric w.r.t. the real axis, and rotate in opposite 
directions with angular speed w. The real value y,(t) is given by their sum, 
the vector BP. As they rotate, the two vectors shrink or grow in length, 
according to the sign of n. 

Once again i t  is necessary to consider separately the case of repeated 
roots. Let us treat specifically the double root, i.e. m = 2 in (2.5,7). Then 
(3.3,14) is no longer the appropriate particular solution. Instead, we get from 
(2.5,7) a particular solution of the form 

where u,  and v ,  are constant vectors, u ,  being the initial state u,  = y(0). 
On substituting (3.3,31) into (3.3,1), and dividing out e", we find 

Since this must hold for all t, we may set t = 0 ,  obtaining 

where B is given by (3.3,3), and (3.3,31) becomes 

y(t)  = (I  - B(il,)t)u,e"' (3.3,34) 

After substituting (3.3,33a) in (3.3,32) a second relation is obtained, i.e. 

A,v,t = Av,t 
valid for all t ,  and hence 

(A,I - A)v, = 0 

Equation (3.3,31) will be a solution of (3 .3 , l )  as assumed, if there exist a 
A+. and a v, that satisfy (3.3,35), and if u, given by (3.3,333) is not infinite. 
The first of these conditions requires that the original characteristic equation 
be satisfied, i.e. 

IaTI - A1 = 0 
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It will now, because of the double root, be of the form 

and this condition is of course satisfied. The second condition is met by any 
eigenvalues found as described previously for repeated roots. Finally, the 
value of u, can be shown to be given by 

where v(A) is the column of adj B that gives the eigenvector v,. 

CHARACTERISTIC COORDINATES 

In this section we show how the given system of simultaneous, or coupled, 
real differential equations can be transformed into a new set of separate or 
uncoupled equations, one for each of the new variables. This decoupling is 
produced by in effect selecting the eigenvectors as the coordinate system 
for the state space instead of the original coordinates, the yi. 

Let the n x n matrix formed of the n eigenvectors be 

Now let us define a new set of system variables (state space coordinates) qi 
by the transformation 

y = U q ;  q=U-ly  (3.3,39) 

(Recall that for self-adjoint systems, U is an orthogonal matrix and UT = 
U-l; the above transformation is then orthogonal. In general, however, 
this is not the case.) It follows from (3.3,39) that 

i.e. that the state vector is a superposition of n vectors parallel to the eigen- 
vectors. The q,(t) are the characteristic coordinates. Comparison with (3.3,10) 
shows that they must be of the form ~ , e " ~  where cci are arbitrary constants. 
Substitution of (3.3,39) into the differential equation of the system, (3.3,l) 
then yields 

Uq = AUq 
or, premultiplying by U-l, 

q = U-lAUq (3.3,41) 

We must now examine the matrix U-1AU. Using (3.3,38) we have 

AU = A[ulu2 . . . u,] 

= [AulAu2 . . Au,] 
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But the defining condition on the eigenvectors is 

Au, = Riai 

whence AU = [ulillu,R, - . . u,1,] 

= UA 

where 

is a diagonal matrix of the eigenvalues. It follows from (3.3,43) that 

U-lAU = A (3.3,45) 
and that (3.3,41) becomes 

s = A q  (3.3,46) 
This is the desired transformed system of differential equations, and since 
A is diagonal, each contains only one of the q's. The ith member is 

a .  = 
2 2 2  

from which we get at once that 

qa = qa(0)eht 
and hence (3.3,40) becomes 

IZ 

Since q(0) = W1y(0) from (3.3,39), then (3.3,48) is seen to be a practical 
form for the solution of autonomous linearlinvariant systems. An alternative 
form for (3.3,48) is 

= U ~ ~ ~ U - ' ~ ( O )  
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where, as can be verified by direct expansion, exp At gives the diagonal 
matrix of the exponential coefficients. Comparison of (3.3,49) with (3.3,13) 
shows that 

e ~ t  = ~ ~ " u - 1  (3.3,50) 

The usual situation in vehicle dynamics is that some of the eigenvalues 
and eigenvectors occur in conjugate complex pairs. Thus some members of 
(3.3,46) will correspondingly be complex pairs. These may be transformed into 
a set of second-order equations, one for each complex pair of qi. Thus let 
qj and qj+, = q: be such a pair. The corresponding equations are 

Let 

and 

The cci and pi are now real linear combinations of the original variables yi 
that can be calculated by expanding (3.3,39). The pair of conjugate equations 
are now expanded by means of (3.3,52) to give 

Oij + i l ,  = (nj  + iwi)(ccj + ;aj)  

cii - i l i  = (nj  - iwi)(ai - i p j )  

Taking real and imaginary parts of either of the above leads to the alternative 
pair of first-order coupled equations 

&. = %.a.  - w.p .  
3 3 3  3 3  

li = wiai + nipj (3.3,53) 

Finally, by eliminating ai or pi we get a pair of uncoupled real second-order 
equations 

tij - 2ncij + (n2 + w2)aj = 0 

pi - 2n6, + (n2 + w2)pj = 0 (3.3,54) 

These equations for the a, ,!? replace the original pair of complex first-order 
equations (3.3,51). However, the number of arbitrary constants in the 
solutions of (3.3,54) is still on$ two, i'.e. ~ ~ ( 0 )  and pj(0), since (3.3,53) fix 
the inital values of ki and bj. 

STABILITY CRITERIA 

As noted in the foregoing, the stability of a linearlinvariant system is 
determined by the roots of the characteristic equation. A characteristic mode 



System theory 69 

will be divergent if its real part is positive, and .convergent if the real part is 
negative, the latter denoting asymptotic stability. It is not necessary, 
however, actually to solve the characteristic equation in order to find whether 
the roots have positive real parts. This can be determined from its coefficients 
alone. The conditions on the coefficients that must be satisfied were first 
stated by Routh (ref. 3.5), who derived them from a theorem of Cauchy. Let 
the characteristic equation be 

c,sn + C , - ~ S " - ~  + ' - ' + Co = 0 (c ,  > 0) (3.3,55) 

The coefficient c,  can always be made positive by changing signs throughout, 
so the requirement G ,  > 0 is not restrictive. The necessary and sufficient 
condition for asymptotic stability (i.e. that no root of the equation shall be 
zero or have a positive real part) is that each of a series of test functions shall 
be positive. The test functions are constructed by the simple scheme shown 
below. Write the coefficients of (3.3,55) in two rows as follows: 

c,  Cn-2 ' ' ' 

C,-1 Cn-3 Gn-5 . ' 

Now construct additional rows by cross-multiplication: 

P31 p32 p33 . ' . 
' 4 1  ' 4 2  p43 ' ' ' 

P,, . . . 
etc. 

where 
= Cn-lCn-z - CnCn-3, P32 = c , - ~ c , - ~  - C,G,-,, etc. 

and 
P41 = P31~n-3 - P 3 2 ~ n - 1 ,  Pd2 = P 3 1 ~ n - 5  - c ~ - ~ P ~ ~ ,  etc. 

= ' 4 1 P 3 2  - P31P42,  etc' 

The required test functions Fo . . P, are then the elements of the first 
column, c,, c,-,, P31 . . P,,,,, If they are all positive, then there are no 
unstable roots. The number of test functions is n + 1, and the last one, F,, 
always contains the product coF,-,. Duncan (ref. 3.6, Sec. 4.10) has shown 
that the vanishing of co and of P,, represent significant critical cases. 
If the system is stable, and some design parameter is then varied in such a 
way as to lead to instability, then the following conditions hold: 

(a) If only co changes from + to - , then one real root changes fromnegative 
to  positive; i.e. one divergence appears in the solution (Pig. 3.6). 

(b) If only F,-, changes from + to -, then the real part of one complex 
pair of roots changes from negative to positive; i.e. one divergent oscillation 
appears in the solution (Fig. 3.6). 
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Thus the conditions co = 0 and Fnnl= 0 define boundaries between 
stability and instability. The former is the boundary between stability and 
static instability, and the latter is the boundary between stability and a 
divergent oscillation. 

TEST FUNCTIONS FOR A CUBIC 

Let the cubic equation be 

As3 + Bs2 + Cs + D = 0 ( A  > 0 )  
Then 

Fo = A, Fl = B ,  F2 = BC - AD, F3 = D(BC - AD)  

The necesary and sufficient conditions for all the test functions to be positive 
are that A ,  B ,  D, and (BC - A D )  be positive. It follows that C also must 
be positive. 

TEST FUNCTIONS FOR A QUARTIC 

Let the quartic equation be 

As4+ Bs3+Cs2 + DS + E = O  ( A  > 0 )  

Then the test functions are Fo = A ,  Fl = B, F2 = BC - AD, F3 = F2D - 
B2E, F4 = F3BE. The necessary and sufficient conditions for these test 
functions to be positive are 

A , B , D , E > O  

and D(BC - AD)  - B2E > 0 (3.3,50) 

It follows that C also must be positive. The quantity on the left-hand side 
of (3.3,50) is commonly known as Routh's discriminant. 

TEST FUNCTIONS FOR A QUINTIC 

Let the quintic equation be 

Then the test functions are Fo = A ,  Fl = B ,  F2 = BC - AD,  F, = 
F2D - B(BE - A P ) ,  F4 = F3(BE - A P )  - F22F, F5 = F4F2F. These 
test functions will all be positive provided that 

A ,  B ,  D, F,  F273'4 > 0 

It follows that C and E also are necessarily positive. 
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COMPLEX CHARACTERISTIC EQUATION 

There may arise certain situations in which some of the coefficients of the 
differential equations of the system are complex instead of real, and conse- 
quently some of the coefficients of the characteristic equation are complex 
too. The criteria for stability in that case are discussed by Morris (ref. 3.7). 

3.4 RESPONSE OF LINEAR/INVARIANT SYSTEMS 

As remarked in Sec. 3.2, one of the basic problems of system analysis is 
that of calculating the system output for a given input, i.e. its response. 
This is the problem of nonautonomous performance, in contrast with the 

FIG. 3.7 The four basic response problems. (1)  Impulse response. (2) Step response. 
(3) Frequency response. (4) Response to random input. 
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autonomous behavior treated in the preceding section. The former is associ- 
ated with nonzero inputs and zero initial conditions, whereas the reverse 
holds for the latter. 

It is evident that the transfer function defined in Sec. 3.2 supplies all that 
is required for such response calculations-and provided that the input and 
transfer function are not too complicated, the whole procedure can be 
carried out analytically, leading to closed-form results. The method, of 
course, is to calculate the Laplace transform of the input, and then carry 
out the inverse transformation of a(s )  = Q(s)Z(s). When this is not practical, 
i t  is necessary to resort to machine computation to get answers. 

The major response properties of linearlinvariant systems can be displayed 
by considering four basic kinds of input, as illustrated in Fig. 3.7. These 
are treated individually in the sections that follow. Before proceeding to 
them, however, we shall first digress to consider a useful interpretation of 
the transfer functions of high-order systems. 

INTERPRETATION OF HIGH-ORDER SYSTEM AS A CHAIN 

The transfer function for any selected inputloutput pair can be found as 
an element of G given by (3.2,23), i.e. 

where B = sP - A, as in Sec. 3.3 and A and 6: are the constant matrices 
that define the system. In view of the definition of the inverse matrix we 
see that G is given by 

where f ( s )  is the characteristic polynomial (3.3,7). As already pointed out 
in Sec. 3.3 the elements of adj B are also polynomials in s .  It follows from 
(3 .4 , l )  and (3.3,7) that each element of G is of the form 

Q. .  = 
23 

N ( s )  
( S  - &)(s - A2) . . - ( s  - I n )  

(3.4,2) 

where N ( s )  is some polynomial. Now some of the eigenvalues A, are real, 
but others occur in complex pairs, so to obtain a product of factors containing 
only real numbers we rewrite the denominator thus 

m %(n+m) 
f ( 8 )  = W ( 8  - 2,) n (s2 + ars + 7%) 

r=l r=rn+l 
(3.4,3) 

Here I ,  are the nz real roots off ( s )  and the quadratic factors with real co- 
efficients a,  and b, produce the (n - rn) complex roots. It is then clearly 
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evident that the transfer function (3.4,2) is also the overall transfer function 
of the fictitious system made up of the series of elements shown in Fig. 3.8. 
The leading component N(s)  is of course particular to the system, bat all 
the remaining ones are of one or other of two simple kinds. These two, 
first-order components and second-order components, may therefore be 
regarded as the basic building blocks of linearlinvariant systems. It is for 
this reason that i t  is important to understand their characteristics well-the 

'I I 
m first-order 112 (n - m) second-order components 
components 

FIG. 3.8 High-order system as a "chain." 

properties of all higher-order systems can be inferred directly from those of 
these two basic elements. 

IMPULSE RESPONSE 

The system is specified to be initially quiescent and at  time zero is sub- 
jected to a single impulsive input 

The Laplace transform of the ith component of the output is then 

which, from Table 2.3, item 1, becomes 

This response to the unit impulse is called the impulsive admittance and is 
denoted h,,(t). It follows that 

&(s) = Gij(s) (a)  

i.e. G(s) is the Laplace transform of h(t) 

From the inversion theorem, (2.3,s) hi,(b) is then given by 
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Now if the system is stable, all the poles of Gij(s) lie in the left half of the 
s  plane, and this is the usual case of interest. The line integral of (3.4,6) 
can then be taken on the imaginary axis, s = iw ,  so that (3.4,6) leads to 

i.e. it is the inverse Fourier transform of Gij ( io) .  The significance of Bij(iw) 
will be seen later. 

For a first-order component with eigenvalue 1 the differential equation is 

y - a y = x  
for which we easily get 

The inverse is found directly from item 8 of Table 2.3 as 

For convenience in interpretation, il is frequently written as il = - - l /T ,  
where T is termed the time constant of the system. Then 

A graph of h(t) is presented in Fig. 3.9a, and shows clearly the significance 
of the time constant T. 

For a second-order system the differential equation is (2.4, l )  from which it 
easily follows that 

Let the eigenvalues be il = n iw ,  (cf. 2.5,2) where 

w = w,( l  - (2)N 
then &(s) becomes 

and the inverse is found from item 13, Table 3.3 to be 

1 
h(t)  = - ent sin wt 

w 
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FIG. 3.9 Admittances of a, first-order system. 

For a stable system n is negative and (3.4,12) describes a damped sinusoid 
of frequency w.  This is plotted for various 5 in Fig. 3.10. Note that the 
coordinates are so chosen as to lead to a one-parameter family of curves. 
Actually the above result only applies for 5 < 1. The corresponding ex- 
pression for < > 1 is easily found by the same method and is 

1 
h(t)  = - ent sinh w't 

0' 

where 

Graphs of (3.4,13) are also included in Fig. 3.10, although in this case the 
second-order representation could be replaced by two first-order elements in 
series. 
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Fro. 3.10 Impulsive admittance of second-order systems. 

RELATION BETWEEN IMPULSE RESPONSE AND AUTONOMOUS 
SOLUTION 

It follows from (3.4,5a) that the matrix of impulse response functions 
H = [h,J is related to that of the transfer functions by 

Furthermore, from (3.2,23) we have that G(s) = B-l(s)@, so that 

Now in the autonomous case we have (3.3,4) 
- 
y(s) = B-l(s)y(O) 
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Substitution of (3.4,16) into (3.3,4) yields the resuit for the autonomous 
solution with initial condition y(O), i.e. 

STEP-FUNCTION RESPONSE 

This is like the impulse response treated above except that the input is the 
unit step function I(t), with transform 11s. The response in this case is 
called the indicial admittance, and is denoted doe,( t ) .  It follows then that 

Since the initial values (at t = 0-) of hii(t) and d i j ( t )  are both zero, the 
theorem (2.3,16) shows that 

Thus d,,(t) can be found either by direct inversion of (3.4,18b) (see examples 
in Sec. 2.5) or by integration of hij(t). By either method the results for first- 
and second-order systems are readily obtained, and are as follows (for a 
single inputloutput pair the indicial subscript is dropped) : 

First-order system : 

Second-order system : 

and for 5 > 1, d ( t )  is given by the r.h.s. of (2.5,5). 
Graphs of the indicial responses are given in Figs. 3.96 and 3.11. 
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w,t/27r 

F I ~ .  3.1 1 Indicia1 admittance of second-order systems. 

FREQUENCY RESPONSE 

When a stable linearlinvariant system has a sinusoidal input, then after 
some time the transients associated with the starting conditions die out, 
and there remains only a steady-state sinusoidal response at the same 
frequency as that of the input. Its amplitude and phase are generally different 
from those of the input, however, and the expression of these differences is 
embodied in the frequency-response function. 

Consider a single input/output pair, and let the input be the sinusoid 
a, cos ot. We find it convenient to replace this by the complex expression 
x = Aleimt, of which a, cos ot is the real part. A, is known as the complex 
amplitude of the wave. The output sinusoid can be respresented by a similar 
expression, y = A2eiot, the real part of which is the physical output. As 
usual, x and y are interpreted as rotating vectors whose projections on the 
real axis give the relevant physical variables (see Pig. 3 .12~) .  



Zero 

(6) 

FIG. 3.12 (a) Complex input and output. (b )  Effect of singularity close to axis. 
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From Table 2.3, item 8, the transform of x is 

Therefore 

The function G(s)  is given by (3.4,2) so that 

The roots of the denominator of the r.h.s. are 

A, . . A,, iw 

so that the application of the expansion theorem (2.5,6) yields the complex 
output 

Since we have stipulated that the systern is stable, all the roots A, . . . A, 
of the characteristic equation have negative real parts. Therefore e b t  -+ 0 
as t -+ co, and the steady-state periodic solution is 

or 

Thus 

is the complex amplitude of the output, or 

the frequency response funct ion,  is the ratio of the complex amplitudes. In  
general, G(iw) is a complex number, varying with the circular frequency w. 
Let it be given in polar form by 
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where K is the static gain (3.2,4). Then 

A 2 = K M ~ ~ ' P  (3.4,27) 
A, 

From (3.4,27) we see that the amplitude ratio of the steady-state output 
to the input is IA,/A,I = K M :  i.e. that the output amplitude is a, = KMa,, 
and that the phase relation is as shown on Fig. 3.12. The output leads the 
input by the angle g,. The quantity M ,  which is the modulus of G(iw) divided 
by K ,  we call the magnification factor, or dynamic gain, and the product 
K M  we call the total gain. It is important to note that M and p, are frequency- 
dependent. 

FIG. 3.13 Vector plot of Meiq for first-order systems. 

Graphical representations of the frequency response commonly take 
the form of either vector plots of 21i?eiq (Nyquist diagram) or plots of M and 
g, as functions of frequency (Bode diagram). Examples of these are shown in 
Figs. 3.13 to 3.17. 

EFFECT OF POLES AND ZEROS ON FREQUENCY RESPONSE 

We have seen (3.4,2) that the transfer function of a linearlinvariant 
system is a ratio of two poIynomials in s ,  the denominator being the char- 
acteristic polynomial. The roots of the characteristic equation are the poles 
of the transfer function, and the roots of the numerator polynomial are its 
zeros. Whenever a pair of complex poles or zeros lies close to the imaginary 
axis, a characteristic peak or valley occurs in the amplitude of the frequency- 
response curve together with a rapid change of phase angle a t  the corre- 
sponding value of m. Several examples of this phenomenon are to be seen in 
the frequency response curves in Figs. 10.3, 10.11, and 10.12. The reason for 
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this behavior is readily appreciated by putting (3.4,2) in the following form: 

where the i16 are the characteristic roots (poles) and the zi are the zeros of 
G(s).  Let 

( S  - %) = pkeiak 

( S  - /Ik) = rkeiSk 

where p, r, u, ,!3 are the distances and angles shown in Fig. 3.12b for a point 
s = iw on the imaginary axis. Then 

When the singularity is close to the axis, with imaginary coordinate w' as 
illustrated for point S on Fig. 3.12b, we see that as w passes through w', a 
sharp minimum occurs in p or r ,  as the case may be, and the angle u or ,!3 
increases rapidly through approximately 180'. Thus we have the following 
cases : 

1. For a pole, in the left half-plane, there results a peak in ]GI and a re- 
duction in g, of about 180". 

2. For a zero in the left half-plane, there is a valley in lGl and an increase 
in g, of about 180". 

3.  For a zero in the right half-plane, there is a valley in IGI and a decrease 
in g, of about 180". 

FREQUENCY RESPONSE O F  FIRST-ORDER SYSTEM 

The first-order transfer function, written in terms of the time constant T 
is 

whence 
K = lim G(s) = T 

s+o 

The frequency response is determined by the vector G(iw) 



FIG. 3.14 Frequency-response curves-first-order system. 
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whence 

From (3.4,29), M and g, are found to be 

A vector plot of Meiq is shown in Fig. 3.13. This kind of diagram is sometimes 
called the transfer-function locus. Plots of M and p, are given in Figs. 3.14a 
and b.  The abscissa is f T  or log oT where f = o/27r, the input frequency. 
This is the only parameter of the equations, and so the curves are applicable 
to all first-order systems. It should be noted that at o = 0, M = 1 and 
g, = 0. This is always true because of the definitions of K and G(s)-it can 
be seen from (3.2,4) that G(0) = K. 

FREQUENCY RESPONSE OF A SECOND-ORDER SYSTEM 

The transfer function of a second-order system is given in (3.4,ll). The 
frequency-response vector is therefore 

From the modulus and argument of (3.4,31), we find that 

A representative vector plot of Meiq, for damping ratio 5; = 0.4, is sllown in 
Fig. 3.15, and families of M and p, are shown in Figs. 3.16 and 3.17. Whereas 
a single pair of curves serves to define the frequency response of all first- 
order systems (Fig. 3.14), it takes two families of curves, with the damping 
ratio as parameter, to display the characteristics of all second-order systems. 
The importance of the damping as a parameter should be noted. It isespecially 
powerful in controlling the magnitude of the resonance peak which occurs 
near unity frequency ratio. At this frequency the phase lag is by contrast 
independent of 5, as all the curves pass through g, = -90' there. For all 
values of 5, M -+ 1 and p, -+ 0 as o/on -+ 0. This shows that, whenever a 
system is driven by an oscillatory input whose frequency is low compared to 



FIG. 3.15 Vector plot of Meiq for second-order system. Damping ratio 5 = 0.4. 

w l u n  

FIG. 3.16 Frequency-response curves-second-order system. 
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the undamped natural frequency, the response will be quasistatic. That is, 
at  each instant, the output will be the same as though the instantaneous 
value of the input were applied statically. 

The behavior of the output when 5 is near 0.7 is interesting. For this value 
of 5, it is seen that p, is very nearly linear with w/wn up to 1.0. Now the phase 
lag can be interpreted as a time lag, T = (p,/27r)T = y/w where T is the 
period. The output wave form will have its peaks retarded by T sec relative 
to the input. For the value of 5 under consideration, p,/(w/wn) = ?r/2 or 
p,/w = rr/2wn = &Tn, where Tn = 2~/w,, the undamped natural period. 
Hence we find that, for 5 = 7, there is a nearly constant time lag T = iTn,  
independent of the input frequency, for frequencies below resonance. 

The "chain" concept of higher-order systems is especially helpful in re- 
lation to frequency response. It is evident that the phase changes through 
the individual elements are simply additive, so that higher-order systems 
tend to be characterized by greater phase lags than low-order ones. Also 
the individual amplitude ratios of the elements are multiplied to form the 
overall ratio. More explicitly, let 

be the overall transfer function of n elements. Then 

so that 
n 

K M  = KrMr (a )  
r=1 

811 logarithmic plots (Bode diagrams) we note that 

log K M  = 2 log l i ,Mr 
r =l 

Thus the log of the overall gain is obtained as a sum of the logs of the com- 
ponent gains, and this fact, together with the companion result for phase 
angle (3.4,33) greatly facilitates graphical methods of analysis and system 
design. 

RELATION BETWEEN IMPULSE RESPONSE AND FREQUENCY 
RESPONSE 

We saw earlier (3.4,7), that h(t) is the inverse Fourier transform of G(iw), 
which we can now identify as the frequency response vector. The reciprocal 
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Fourier transform relation then gives 

G(iw) = h(t)e-iwtdt I-: (3.4,35) 

i.e. the frequency response and impulsive admittance are a Fourier transform 
pair. 

An alternative to (3.4,7) that involves the integration of a real variable 
over only positive w can be derived from the properties of h(t) and G(iw). 
Since o is always preceded by the factor i in G(iw),  i t  follows that G*(iw) = 
B(-iw) where ( )* denotes the complex conjugate. Hence 

2M cos (cot + y )  dw 

= g J r n ~  cos wt cos y d o  - M sin wt sin y dw (3.4,36) 
Tr 0 

Since h(t) = 0 for t < 0, then the second term on the r.h.s. of (3.4,36) is 
equal to the first term for t < 0. But the second term is an odd function of 
t whereas the f i s t  is even. Hence the two terms are equal and opposite for 
t < 0 and equal for t > 0. Thus 

M ( w )  cos y (w)  . cos wt d o  (3.4,37) 
Tr 

which is the desired result. 

SUPERPOSITION THEOREM (CONVOLUTION INTEGRAL, DUHABYIEL'S 
INTEGRAL) 

The theorem of this section facilitates the calculation of transient responses 
of linear systems to complicated forcing functions. The general response 
appears as the superposition of responses to a sequence of steps or impulses 
which simulate the actual forcing function. 

Let 

and 

Zl(s) be the transform of xl(t) 

Z2(s) be the transform of x2(t) 
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Then the function x3(t) whose transform is the product Z3 = ZlZ2 is 

(3.4,38) 

Proof: 

where u and v are dummy variables of integration. This is equivalent to the 
double integral 

where S is the area of integration shown in Fig. 3 . 1 8 ~ .  Now let the region of 

FIG. 3.18 (a) The (u, v) plane. (b )  The (t ,  T )  plane. 

integration be transformed into the t ,  T plane by the substitution 

u + v = t  

v = T  

Then 

where St is the region shown in Fig. 3.18b. Integration first with respect to 
T gives 

Z3(s) = J m  e-st dt l=?(t  - 7)x2(r )  d~ 
t=O 

Therefore, by definition (2.3,7) 

Q.E.D. 
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We now apply this result when the system G(s) is subjected to an arbitrary 
input x(t). The response is given by 

Now we saw earlier that G(s) = L(s) (3.4,5a), so 

g(s) = fi(s)Z(s) 
whence (3.4,38) yields 

The preceding equation applies to a single input/output pair. For a multi- 
variable system we would obviously have as the extension of (3.4,40a) 
(and similarly for 3.4,40b) 

yi(t) = 2 hij(t - T ) X ~ ( T )  d~ ( a )  
r=O j S' (3.4,41) 

( a )  

where H is the rectangular matrix of impulse response functions. 
By considering a slightly modified form of (3.4,39) we can obtain a com- 

panion result involving d ( t )  instead of h(t) .  We may write (see 3.4,lSb) 

Again applying (3.4,38) we get 
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As with the impulse response, the matrix form of (3.4,42a) for example, 
for a multivariable system, is 

SOLUTION INCLUDING INITIAL CONDITIONS 

The general solution of (3.2,21) for arbitrary y(0) and arbitrary x(t) is 
obtained by superposition of the complementary function (3.4,17) and the 
"particular integral" (3.4,41 or 43). Thus in general 

The physical significance of (3.4,40a) and (3.4,42a) for example is brought 
out by considering them in 6he one-dimensional case as the limits of the 
following sums 

y(t) = d'(t)x(O) + 2 d ( t  - T ) ~ ( T )  AT ( b )  (3.4,45) 

Typical terms of the summations are illustrated on Figs. 3.19 and 3.20. 
The summation forms are quite convenient for computation, especially when 
the interval AT is kept constant. 

(T)AT = impulse applied a t  time T 

0 t 

tT+t-T--J 
FIG. 3.19 Duhamel's integral-impulse form. 



taircase" representation of x(t)  

0 
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FIG. 3.20 Duhamel's integral-indicid form. 

RESPONSE TO A SET OF STATIONARY RANDOM INPUTS 

We now consider the case when the system response is a sum of responses 
to a set of random inputs. An example of this situation is the roll response 
of an airplane flying through a turbulent atmosphere, when there is a multiple 
input associated with the three components of the atmospheric motion, each 
contributing to the output via a different transfer function. Figure 3.21 
shows an example in which a number of inputs combine to form a single out- 
put. More generally, for n inputs and m outputs related by an (m x n)  

Y (t)  

FIG. 3.21 Response to a set of random inputs. 
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transfer function matrix G(s)  
?(so = G(s)F(s) 

By virtue of (3.2,2a) the transfer function matrix likewise connects the 
Fourier transforms of the inputs and outputs, 

Y ( o )  = G( iw)X(o )  ( a )  (3.4,46) 

or with reference to truncated functions, see (2.6,19), 

Y ( w ;  T )  = G ( i o ) X ( w ;  T )  ( b )  

Now the cross-spectral density of two components (y i  and yi) of y is given by 
(2.6,22) 

The matrix of @,,? is therefore 

1 
@,, = lirn - Y * ( o ;  T ) Y T ( o ;  T )  

T - m  4T 

1 
= lim - [G( iw)X(o ;  T ) ] * [ G ( i w ) ~ ( w ;  T)IT 

T - m  4T 

1 
= lim - G * ( i w ) ~ * ( o ;  T ) X ~ ( ~ ;  T ) G ; ~ ( ~ W )  

T - t m  4T 

1 
lirn - x * ( w ;  T ) X T ( w ;  

T - m  4T 

From (3.4,48) it follows that the power spectral density of yi (a diagonal 
element of 9,) is 

and that if the input cross spectra are zero 

This is a very important result for application to flight dynamics since it  
provides a way of calculating the output power spectral density from a 
knowledge of all the input cross spectra and the relevant transfer functions. 
An important special case is that in which there is only one input, x(t)  and 
one output, y(t) .  Then (3.4,50) reduces to 

@,,(a) = IG(io)12 @xx(w) (3.4,51) 



System theory 95 

This is the most commonly used input/output relation for random processes. 
It will be recalled (see Sec. 2.6) that most of the interesting probability 
properties of y(t) can be deduced from Qy,,,(w). 

A USEFUL THEOREM CONCERNING MEAN-SQUARE RESPONSE 

In  some calculations, it is not required to have the spectrum of the output, 
its mean-square value being all the information wanted. In  such cases the 
desired result may be obtained more simply than by first calculating cD,, 
and then integrating it. The method is given in ref. 3.12 for single and dual 
inputs. We present below only the theorem for a single input. 

Let the system, with transfer function G(s), be subjected to a transient 
input x(t), with corresponding transient output y(t). The integral square of 
the output is given by Parseval's theorem (see ref. 2.4, Sec. 120). 

where Y(w) is the Fourier transform of y(t). Now the Fourier transform of 
the output is given by (3.2,2a) as 

Y(co) = G(iw)X(w) 
and hence 

Now we also have from (3.4,51) that if the input is a random function, the 
mean-square output is 

By comparing (3.4,53) and (3.4,54), we see that = E if 

That is, if one can find a transient x(t) whose Fourier transform is related by 

(3.4,55) to the power spectrum of the given random function, then can 
be calculated from the output of the transient. This may prove to be a much 
easier and more economical computation, whether an analog or digital com- 
puter is used. In particular, for spectrum functions like those of atmospheric 
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turbulence (the "Dryden" spectra) the following are suitable transients: 

Spectrum Function %,(a) Equivalent transient x( t )  

The advantages for analog computation are that no random function 
generator is needed, and that the computation using a single transient input 
takes much less time. 

3.5 TIME-VARYING AND NONLINEAR SYSTEMS 

I n  the preceding sections we have presented the methods for analysis 
of linearlinvariant systems. These systems are the simplest kind and the 
methods of analysis are in effect omnipotent, in that in principle they provide 
complete exact solutions for all such systems. Only sheer size provides 
limits to practical computation. 

On the other hand, linear time-varying systems (linear systems with non- 
constant coefficients) and nonlinear systems present no such comfortable 
picture. Their characteristics are not simply classified and there are no 
general methods comparable in power to those of linear analysis. In the 
aerospace field, nonlinearities and time variation occur in several ways. 
The fundamental dynamical equations (see Chapter 5) are nonlinear in the 
inertia terms and in the kinematical variables. The external forces, especially 
the aerodynamic ones, may contain inherent nonlinearities. When the flight 
path is a transient, as in reentry, rocket launch, or a landing flare, the aero- 
dynamic coefficients are time-varying as well. In  the automatic and powered 
control systems so widely used in aerospace vehicles, there commonly occur 
nonlinear control elements such as limiters, switches, dead-bands, and others. 
Finally, the human pilot, actively present in most flight-control situations, 
is the ultimate in time-varying nonlinear systems (see Chapter 12). 

Although completely general methods, apart from machine computation 
of course, are not available for analyzing the performance and stability of 
time-varying and nonlinear systems, there are nevertheless many important 
particular methods suitable for particular classes of problems. This subject is 
much too large for a comprehensive treatment here. The reader is referred 
to  refs. 3.8-3.10 for treatises devoted to the subject. 

It should be pointed out that even when a flight vehicle system is essentially 
nonlinear, much may be learned about i t  by first carrying out a linear analysis 
of small disturbances from a reference steady state or reference transient. 
This normally provides a good base from which to extend the analysis to  



System theory 97 

include nonlinear effects, as well as a limiting check "point" for subsequent 
computation and analysis. Of the particular methods available for studying 
nonlinear systems, we consider two sufficiently relevant to flight dynamics 
to present brief introductions to them below. 

DESCRIBING FUNCTION 

In the simplest terms, a describing function of a system is a transfer function 
that linearly connects an input/output pair approximately-i.e. it provides 
a linear approximation to the actual system that is best in a certain sense. 

FIG. 3.22 Model of nonlinear system. 

Figure 3.22 shows a nonlinear system with a particular input x(t) and output 
y(t). The output is presumed to be made up of the sum of a part y,(t) lineary 
related to the input 

Y,(s) = N(s)Z(s) (3.5,l) 

and a remnant r(t) that makes up the difference. Clearly, if r(t) is "small" 
enough compared to y(t), then y,(t) provides a useful evaluation of the system 
performance. When an appropriate measure of r(t) is minimized, N(s) 
becomes the corresponding describing function. For transient inputs, a 
suitable measure would be j r2 dt; for steady-state inputs, periodic or sto- 
chastic (the usual case treated), 7 is the quantity minimized. It is seen 
that a different describing function is obtained for every input to a given 
system-i.e. the describing function, unlike the transfer function of a linear 
system, is a function of the input. 

STEADY-STATE DESCRIBING FUNCTION 

The relations implied by Fig. 3.22 can be reinterpreted as in Fig. 3.23. 
Now applying (3.4,50) we get the spectral density of r(t) 
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BIG. 3.23 Alternative model of nonlinear system. 

Since aYx = @:y by (2.6,15b), then 

We now wish to fbd the particular function N(iw)  that minimizes = 
$_", @TT(w) do.  This can be done by the classical method of variational 
calculus, as follows. 

Let us assume that N( iw)  is not exactly that which minimizes7 but differs 
from i t  slightly, i.e. 

N( iw)  = f l ( iw)  + €f( iw)  (3.5,4) 

where f l( iw) is the optimal function sought, f  ( iw)  is an arbitrary continuous 
function, and E is a small parameter. Then f l( iw) is given by the solution of 

When (3.5,4) is substituted into (3.5,3) and the 1.h.s. of (3.5,5) is evaluated, 
the result is 

+ @,,(o)[fl*(iw) f (io) + f * ( iw) f l ( iw)] )  dw = 0 
or 

Since f  (io) is an arbitrary function, the integral can only be zero if the two 
expressions in square brackets are both zero. Since one is simply the conjugate 
of the other they are simultaneously zero, and the required condition is 



System theory 99 

SlNUSOlDAL DESCRIBING FUNCTION 

When a stable linear system has a sinusoidal input x = AleiQt the steady- 
state output y(t) after the initial transients have decayed is a sinusoid of 
the same frequency, and the input/output relation is given by (3.4,20). A 
"well-behaved" nonlinear system with such an input will have a steady-state 
output that is also periodic, but not sinusoidal, other harmonics being present. 
Whereas the input spectrum is a "spike," the output spectrum is a "comb." 
Other behavior is conceivable, but the above describes the usual situation; 
we assume it to be the case here. Since the mean product of sinusoids of 
different frequency is zero, the only Fourier component of the output that 
has a nonvanishing correlation R,, with the input is the fundamental, i.e. 
the component that has the same frequency Q as the input. 

Since a,, is the Fourier integral of R,,, it follows that only the funda- 
mental component yf  of y contributes to @,,. From (2.6,22) we have 

1 
@ = lim - X*( iw ; T )  Y f ( i w ;  T )  

xyf ~ - + m  4T 

@,, = lim I X*(iw ; T ) X ( i w ;  T )  
~ + m  4T 

The ratio (3.5,7) then leads simply to 

where Y f ( i w )  and X ( i w )  are the Fourier transforms of the sinusoids, given 
in Table 2.2. Now if these sinusoids are described by 

= A eiRt. - A eiQt 
1 7  f -  2 

where Al and A, are the complex amplitudes of the input and output 
fundamental, respectively, we get, using item 3,  Table 2.2, 

which is identical with the frequency-response function given by (3.5,20) 
provided that we regard the fundamental as the total output. 

Evidently the sinusoidal describing function leads to a remnant made up 
of all the lower and higher harmonics of the output. 

TWO-INPUT DESCRIBING FUNCTIONS 

If two inputs to a nonlinear system contribute to the output y, as in Fig. 
3.24 we may define two describing functions by the same principle as used 
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~ l ( t )  

xz(t) 

Nonlinear system 

FIG. 3.24 Nonlinear system with two inputs. , 

above for one input. The method is basically the same, but the details are a 
little more involved. The result for N ,  is 

and that for N2(io) is obtained by permuting the subscripts 1 and 2. Note 
that if xl and x2 are uncorrelated, so that the cross-spectral density = 0, 
then (3.5,ll) reduces to (3.5,7), the formula for a single input. 

LYAPUNOV STABILITY THEORY 

The second general method for treating nonlinear systems is Lyapunov's 
theory. 

The stability of linearlinvariant systems was shown in Sec. 3.3 to be com- 
pletely determined by the eigenvalues, and certain criteria were presented 
that could be applied to the characteristic equation to predict the stability 
properties of the roots. In  that case we may say that we have investigated 
the stability by studying the properties of the solutions. This is possible of 
course only because we have an adequate theory for the solutions. For more 
general systems, this approach may not be possible since the solutions are not 
in general known. A method of treating the stability of equilibrium for any 
system, which does not require a knowledge of the solutions, has been given 
by Lyapunov (refs. 3.2, 3.8). We present below a brief outline of the main 
concepts but refer the reader to refs. 3.2 and 3.8 for a fuller treatment and 
for the methods of finding the appropriate Lyapunov functions. 

We begin with a simple analogy by considering a ball at  the bottom of a 
cup of arbitrary shape. The bottom is a position of stable equilibrium with 
respect to all disturbances small enough that the ball is not projected over 
the rim. This stable condition can be viewed from the standpoint of the 



System theory 10 1 

total energy E of the ball. If E is less than the potential energy EOrit associ- 
ated with the height of the lowest point on the rim, then escape is impossible, 
and the system is stable. Note that the lowest point in the cup is a point of 
minimum potential energy, and that the minimum of E corresponds to 
equilibrium there. In any real case, there will be frictional dissipation, so 
that 2 i s  negative whenever there is motion, and if the ball is started any- 
where in the cup with E < Earit, it will eventually come to rest a t  the bottom. 

The Lyapunov theory is basically nothing more than a generalization of 
the above concept, and indeed for some physical systems, the energy itself 
is a suitable Lyapunov function. More generally, a Lyapunov function 
V(x, . . x,) is any positive definite function of all the state variables xi that 
is zero at the origin (an equilibrium state) and that increases monotonically 
within a region 9 of state space as one proceeds along the vector grad V = 
VV, i.e. it is a "cup-shaped" function with its "bottom" a t  the equilibrium 
point the stability of which is to be investigated. The critical question is 
whether is positive, negative or zero in W. If positive, the state point 
"climbs up the V hill" proceeding ever farther from the origin, indicating 
instability. If negative, the state point descends continuously until it comes 
to rest a t  the origin, and the system is asymptotically stable. If P = 0, then 
the only motion possible is an orbital trajectory in which the state point 
remains on the surface V = const. These cases are illustrated in Fig. 3.25 
for a two-dimensional state space. The essence of the problem is of course 
to find a suitable V function. Ideally one wants that function that gives the 
exact stability boundary in state space. This ideal is not usually achieved 

\ Lv= constant 

for + 

FIG. 3.25 Trajectories in state space. 
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for other than linearlinvariant systems, or simple mechanical ones such as 
the ball in the cup. 

The great advantage of this approach is that p can be calculated directly 
from the differential equations, no solutions of them being needed. Let the 
equations be given by 

x = f(x, t )  
or in component form 

'1 = flki, t )  

Then 

Since both V and f are known p can be calculated directly, and the stability 
properties inferred from how its sign varies with position in state space. 

The main disadvantage of the Lyapunov approach is that the functions 
V are to a certain extent arbitrary, and hence can in most cases only provide 
a conservative estimate of stability. For example, if it is found that the limit 
of the monotonically increasing V for negative T' is a certain surface S in 
state space, then it can be said that the system is stable for disturbances 
sufficiently small that the initial state point lies within S,  but it is not known 
whether it may be stable beyond 8, since a different V function might have 
produced a larger domain of stability. It should be pointed out that for 
some problems in mechanics, as distinct from control systems (which have 
been the principal object of applications of Lyapunov theory) the Hamiltonian 
of the system can be a useful Lyapunov function (see Pringle, ref. 3.11). 

The previous discussion has related to the stability of an equilibrium 
point (the origin in state space). However there are many important ~ituat~ions 
in the flight of aircraft and spacecraft when there is no steady state, as in 
the take-off and landing of aircraft, and the launch and reentry of spacecraft. 
If the state vector in such transient situations changes "slowly" with time 
(what constitutes "slowness" must be determined in each case), then a 
point-by-point stability analysis may be useful. In  that case, each point on 
the trajectory is treated as a constant reference state (equilibrium) and the 
stability of disturbances from it is investigated in the manner discussed 
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above. When the transient is "rapid," i.e. when the characteristic times (e.g. 
periods and damping times) of the disturbance motions are long enough that 
large changes can occur in the reference transient during these time intervals, 
then the "quasi-steady" analysis may be meaningless. In this case the stability 
analysis of the transient can be transformed into that of an equilibrium point 
as explained on p. 50, and the Lyapunov analysis for equilibrium again 
applied. 

A general comment about the usefulness of stability analysis in aerospace 
systems is in order. It is a fact that stability is neither a necessary nor a 
sufficient condition for the successful performance of aerospace missions. 
A stable airplane may have unsatisfactory handling qualities, and vice versa; 
and an unstable flight path for a lifting entry vehicle may be perfectly 
acceptable within the tolerances on initial conditions that are practically 
available. Thus the determination of stability boundaries of nonlinear and 
time-varying systems does not appear to be an objective to which a great 
deal of effort should be applied. Of more direct import are appropriate 
performance criteria. These may take many forms depending on the vehicle 
and mission-for example, pilot rating in aircraft and terminal errors for 
reentry vehicles. 



Reference franzes and 
transformations 

C H A P T E R  4 

When formulating and solving problems in flight dynamics, a number of 
frames of reference (coordinate axes) must be used for specifying relative 
positions and velocities, components of vectors (forces, velocities, acceler- 
ations etc.) and elements of matrices (aerodynamic derivatives, moments 
and products of inertia, etc.). The equations of motion may be written from 
the standpoint of an observer fixed in any of the reference frames, the 
choice being a matter of convenience and preference, and formulae must be 
available for transforming quantities of interest from one frame to another. 
For example, in an interplanetary space flight mission, one might need Earth- 
fixed axes, target-fixed axes, vehicle-fixed axes, and axes fixed to the distant 
stars. In atmospheric flight, we commonly use Earth-fixed axes, vehicle-fixed 
axes, trajectory-fixed axes, and atmosphere-fixed axes. The references frames 
needed for subsequent analytical developments are defined in the following, 
and a suitable eystem of notation is introduced. 

4.1 NOTATION 

Let Fa and Fb be two right-handed reference frames, with coordinate 
axes denoted as in Fig. 4.1. Note that two alternative systems are used: 
(x, y, z )  or (xl, x2, x3), the choice a t  any time being governed by custom and 
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FIG. 4.1 Notations for coordinate axes. 

convenience. In  general the two frames have relative motion, both linear 
and angular. 

Consider now the description of a typical vector which does not depend 
on the motion of the frame of reference. For example let Fa be the Earth, F ,  
a moving rigid vehicle, and the vector in question be the gravitational force 
exerted by the former on the latter, represented by g in Fig. 4.1. The vector 
g is the same for observers in both Fa and 6 in the sense that they would 
both find it  to be of the same magnitude, and of the same orientation relative 
to any third frame. The components of g along the axes of Fa and Fb are of 
course in general different, and we denote them by 

(Now to calculate one set of components from the other is treated in Sec. 
4.4.) 

A more complicated situation arises when we consider vectors that do 
depend on the motion of the reference frame, i.e. that are not the same for 
two observers, one in Fa and the other in F,. For example, consider the veloc- 
ities of a point P relative to Fa and Fb. These are two different vectors, each 
of which may have its components given in the directions of either set of 
axes, leading to four sets of components. 
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The practice followed in this text is to use different symbols for physically 
different vectors, or appropriate subscripts or superscripts. Thus o usually 
represents the angular velocity of a reference frame relative to inertial space, 
and a superscript identifies the rotating frame. For example oE is the angular 
velocity of an Earth-fixed frame FE. Again, vo and v, give the inertial veloci- 
ties of points 0 and C, the frame of reference for components being identified 
with a further subscript, so that vow is the column matrix of the components of 
v, along the axes of Fw (wind axes). 

I n  the example of Fig. 4.1, we may let ua be the velocity of P relative to  
Fa and ub its velocity relative to Fh. The four sets of components are then 

uaa, uOa and u,b, U: 

each being a column matrix as in (4.1,l). 
It should be emphasized that the transformation that transforms ua into 

ub is quite different from that which transforms uaa into uba, and the two 
should not be confused (see Sec. 4.6). 

Notwithstanding the above general rules, certain exceptions to this form 
of notation are made in the subsequent treatments. These are in conformity 
with a long tradition of usage in flight dynamics, and bring the main equations 
derived into harmony with most past and current North American literature 
on the subject. 

4.2 DEFINITIONS OF REFERENCE FRAMES USED IN 
VEHICLE DYNAMICS 

The principal reference frames used in vehicle dynamics are defined below, 
and illustrated in Figs. 4.2 to 4.7. 

4.2.1 INERTIAL REFERENCE FRAME FI (INERTIAL AXES, OIxIyIzI) 

In  every dynamics problem there must be an inertial reference frame, 
either explicitly defined, or lurking implicitly in the background. This frame 
is fixed, or in uniform rectilinear translation, relative to the distant stars; 
in it  Newton's second law is valid for the motion of a particle, in the sense 
that if f be the sum of all external forces acting on the particle, and a its 
acceleration relative to FI, then f = ma. If a is acceleration relative to a 
reference frame that has rotation, or acceleration of its origin, this equation 
does not hold, and additional terms that depend on the motion of the reference 
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frame must be added to the equation (see Sec. 5.1). The velocity of the vehicle 
mass center relative to FI is denoted v'. 

4.2.2 EARTH-FIXED REFERENCE FRAME, FE (EARTH AXES 
OEXEYE~E)  

In  many problems of airplane dynamics, the rotation oE of the Earth 
relative to FI can be neglected, and any reference frame fixed to the Earth 
can be used as an inertial frame. In hypervelocity and space flight this is 
generally not the case, however, and the angular velocity of the Earth must 
usually be included in the analysis. Two Earth-fixed frames are of interest, 
as illustrated in Fig. 4.2. FEC is the "Earth-center" frame with origin at the 
center of the Earth and axis directions fixed by a reference point on the 
equator and the Earth's axis. This frame is useful when the Earth's rotation 
must be considered. F E  is an Earth-surface frame, with origin near the 
vehicle if possible, and with OEzE directed vertically down. OExEyE is the 
local horizontal plane, OExE points north, and OEyE east. 

FIG. 4.2 Earth axes. ( A ,  p) = Iatitude, longitude. 
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4.2.3 VEHICLE-CARRIED VERTICAL FRAME, Fv (AXES OVyVzv) 

This is a reference frame in which the origin Ov is attached to the vehicle, 
usually a t  the mass center C, and in which Ovzv is directed vertically 
downward, i.e. along the local g vector. The directions of the remaining 
axes can be specified in any convenient way. We choese Ovxv to point to  
the north, and OVyv east. In  many applications the origin of F E  is near 
enough to the vehicle that Earth curvature is negligible, and then P V  has 
axes parallel to FE,  as illustrated in Fig. 4.3. 

Trajectory, or flight path 

PIG. 4.3 The local ( P E )  and vehicle-carried ( F y )  
vertical reference frames. 

Since F E  and P v  are both chosen so that their respective x axes point 
north, $hen PE can be made parallel to Pp by the two consecutive rotations 

(i) -An around OEyE 
(ii) A p  around OECzEc 

where 

and (A, p) are latitude and longitude of OV 

(AE, p E )  are latitude and longitude of 0,. 

The angular velocity of P v  relative to is wv. 
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4.2.4 ATMOSPHERE-FIXED REFERENCE FRAME, FA (AXES OAxAyAzA) 

Since the relevant velocity for aerodynamic forces in atmospheric flight 
is that of the vehicle relative to the local atmosphere, i t  is essential to be 
concerned with the motion of the latter. When the atmosphere is, or is 
assumed'to be, at  rest relative to the Earth, then FA and FE are the same. 
If the atmosphere is in uniform motion relative to F E ,  with velocity W ,  
then F A  is convected relative to FE with that velocit,~. 

If the motion of the atmosphere is nonuniform in time or space (as is in 
reality always the case) then F A  is so chosen that the space and time averages 
of the motion of the atmosphere relative to FA taken over the space-time 
domain of concern in the problem, are zero. The motion of F A  relative to  
FE is in this case also a constant velocity W. (A treatment of flight in a 
turbulent atmosphere is given in Chapter 13.) 

The velocity of the vehicle mass center relative to FA is denoted by V 
so that its velocity relative to FE is 

4.2.5 AIR-TRAJECTORY REFERENCE FRAME Fw (WIND AXES, 
O w x w ~ w z w )  

This reference frame has origin fixed to the vehicle, usually at the mass 
center C, and the Owxw axis is directed along the velocity vector V of the 
vehicle relative to the atmosphere. The axis Omzw lies in the plane of 
symmetry of the vehicle if it has one, otherwise is arbitrary. If the atmosphere 
were at rest, then 0,  would trace out the trajectory of the vehicle relative 
to  the Earth, and Owx,  would be always tangent to it. The frame F w  
has angular velocity epW relative to FI.  Although by doing so we deparh 
from the general scheme, in the interest of simplicity we shall denote the 
components of m w  in F,, by [pw , q,, rw]. 

4.2.4 BODY-FIXED REFERENCE FRAME F ,  (BODY AXES, Oxyz) 

Any set of axes fixed in a rigid body is a body-fixed reference frame. If 
the body is not rigid, i.e. if i t  has articulated parts such as control surfaces, 
or elastic motions, then the body axes are chosen to be those for which the 
resultant linear and angular momenta of the relative motions of articulation 
and elastic distortion vanish. This choice is always possible (see Sec. 5.1). 
The origin of the body axes is usually the mass center C. A particular set 
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of body axes with special properties are principal axes of inertia, denoted 

FP. 
Flight vehicles almost invariably have a plane of symmetry (to a good 

approximation); this plane is chosen to be Cxz, with z directed "downward." 
Body axes play an especially important role in flight dynamics, and there 

is a tradition of notation associated with them. This is given in Fig. 4.8. 
Note that the subscript B is dropped when there is no possibility of con- 
fusion. The angular velocity of FB relative to FI is w (p, q, r), and the 
components of VB are (u, v, w). 

4.2.7 STABILITY AXES F, (O,x,y,z,) 

Stability axes are a special set of body axes used primarily in the study 
of small disturbances from a steady reference flight condition. If the reference 
flight condition is symmetric, i.e., if V lies in the plane of symmetry, then 
F, coincides with the wind axes FW in the reference condition, but departs 
from it, moving with the body, during the disturbance. If the reference 
flight condition is not symmetric, i.e. with sideslip, then Osxs is chosen to 
lie on the projection of V in the plane of symmetry, with Oszs also in the 
plane of symmetry. 

Trace of 
horizontal 

plane 

; Projection of g on 
I plane of symmetry 

FIG. 4.4 Plane of symmetry-42%; L = lift vector. 



FIG. 4.5 Plane CxwyW: D, C = 
drag and cross-wind force vectors. D 

FIG. Lxz2 4.6 Plane CxWzW. 

Plane CY&W 1 
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'i" 
FIG. 4.8 Notation for body axes. 

L = rolling moment p = rate of roll 

M = pitching moment q = rate of pitch 

N = yawing moment P = rate of yaw 

[ X ,  Y, 21 = components of resultant aerodynamic force 

[u, u, w] = components of velocity of G relat~ve to atmosphere 

4.3 DEFINITION OF THE ANGLES 

THE VEHICLE EULER ANGLES 

The orientation of any reference frame relative to another can be given 
by three angles, which are the consecutive rotations about the axes z, y, x in 
that order that carry one frame into coincidence with the other. This is a 
particular case of Euler angles. In Wight dynamics, the Euler angles used 
are those which rotate the vehicle-carried vertical frame P v  into coincidence 
with the relevant axis system. Only two sets are commonly used, those for 
the body axes FB, and for the wind axes FW. The angles are denoted (y, 0, $) 
for body axes, including the special case Fs, and (yw, Ow, $w) for wind 
axes. Figure 4.9 shows the sequence of rotations. 

(i) A rotation Q, about OVzV, carrying the axes to OVx2y,z,. y is the 
azim,uth angle 

(ii) A rotation 8 about Ovy2, carrying the axes to OVx3y,z3. 0 is the 
elevation angle 
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FIG. 4.9 The Euler angles. 

(iii) A rotation u$ about OVx3, carrying the axes to their final position 
OVxyz. 4 is the bank angle. 

In order to avoid ambiguities which can otherwise result in the set of 
angles (y, 8 , 4 )  the ranges are limited to 

The Euler angles are then unique for most orientations of the vehicle,-1- 
although it  should be noted that in a continuous steady rotation, such as 
rolling, the time variation of C$ for example is a discontinuous sawtooth 
function. 

As shown in Fig. 4.7, the angle Ow is also commonly denoted by y,  called 
the angle of climb for an obvious reason. 

t There is an ambiguity for the angles defining a vertical dive, since (y ,  19, 4)  = 

(a f b, -3~12, -a) gives the same final orientation regardless of a. a = 0 would be the 
natural choice, and this special case does not seem to cause any difficulties. 
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THE AERODYNAMIC ANGLES 

The linear motion V of the vehicle relative to the atmosphere can be 
given either by its three orthogonal components (u, v, w) in a body-axis 
system (see examples in Figs. 4.4 to  4.7), or alternatively by the magnitude 
V and two suitably defined angles. These angles, which are of fundamental 
importance in determining the aerodynamic forces that act on the vehicle, 
are defined thus: 

Angle of attack (see Fig. 4.4): 

1w a, = t a n  - -7r<u,<7~ 
u 

Sideslip angle (see Fig. 4.5) : 

It is most important to note that a, as here defined will be the same as 
that commonly used in aerodynamic theory and in wind-tunnel testing only 
if the body axis Gx is parallel to the basic aerodynamic reference direction, 
i.e. the mean aerodynamic chord or the zero-lift 1ine.i Otherwise it  differs by a 
constant. When the body axes used are stability axes Fs, the latter will 
normally be the case. It follows that the velocity components in the body 
axes are 

u = v cos ,6 cos a, 

v = V sin ,6 (4.3,4) 

w = V cos /3 sin a, 

It will be observed that, in the sense of Euler angles, the aerodynamic 
angles relate the two frames Fw and & by the rotation sequence (-@, a,, 0) 
which carry the former into the latter. 

4.4 TRANSFORMATION OF A VECTOR 

Let v be a vector with the components 

.t The symbol a is reserved for the angle of attack of the zero-lift line of the vehicle 
when its controls are in neutral position. 
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%a2 1 
Component of v,, on xbi 

xbi 

FIG. 4.10 Component of vector. 

The component of val in the direction of xbi is val cos ( O i l )  where Oil denotes 
the angle between Obxbi and Oaxa1 (see Pig. 4.10). Thus by adding the three 
components of vaj in the direction of xbi we get 

3 

vbi = 2 li,.vaf i = 1 . . 3 
j=1 

(4.4,l) 

where 
zij = CoS (ezi) (4.4,2) 

are the nine direction cosines. Equation (4.4,l) is evidently the matrix 
product 

vb = Lbava (a)  
where (4.4,3) 

Lba = [ ' i j l  ( b )  

and constitutes the required transformation formula. I ts  inverse readily 
reverses the transformation to give 

where 
va = L;,lvb = La,vb 

L = L-1 
a b -  ba 

PROPERTIES OF THE L MATRIX 

Since va and vb are physically the same vector v,  the magnitude of va must 
be the same as that of v,, i.e. v2 is an invariant of the transfor~rnation. Prom 
(4.4,3) this requires 

v2 = vbTvb = vaTLbaTLbava = vaTva (4.45) 

It follows from the last equality of (4.4,5) that 
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Equation (4.4,6) is known as the orthogonality condition on L,,. From (4.4,6) 
it follows that 

IL,aI2 = 1 

and hence that IL,,I is never zero and the inverse of Eb, always exists. In  view 
of (4.4,6) we have, of course, that 

i.e. that the inverse and the transpose are the same. Equation (4.4,6) together 
with (4.4,33) yields a set of conditions on the direction cosines, i.e. 

It follows from (4.4,8) that the columns of kbaare vectors that form an orthog- 
onal set (hence the name "orthogonal matrix") and that they are of unit 
length. 

Since (4.4,8) are a set of six relations among the nine lij, then only three 
of them are independent. These three are an alternative to the three inde- 
pendent Euler angles for specifying the orientation of one frame relative to 
another. 

4.5 THE k MATRIX lN TERMS OF ROTATION ANGLES 

The transformations associated with single rotations about the three 
coordinate axes are now given. In  each case Fa represents the initial frame, 
& the frame after rotation, and the notation for L identifies the axis and 

(c) 

FIG. 4.1 1 The three basic rotations. (a) About ma,. ( b )  About xu,. ( c )  About Xu,. 
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the angle of the rotation (see Fig. 4.11). Thus in each case 

Vb = L,(X,)v, (4.5911 

By inspection of the angles in Fig. 4.11, the following matrices are readily 
verified. 

[ 
cos X2 0 -sin X, 

E2(X2)= 0 1 0 

sin X2 0 cos X2 

cos X3 sin X3 0 

L3(X3) = [-.; x3 j 
The transformation matrix for any sequence of rotations. can be constructed 
readily from the above basic formulas. For the case of Euler angles, which 
rotate frame Pv into FB as defined in Sec. 4.3, the matrix corresponds 
to the sequence (X3, X2, XI) = (y, 8, +), giving 

E 1 3 ~  = El(+] ' L2(0) %(Y) (4.5,3) 
[The sequence of angles in (4.5,3) is opposite to that of the rotalions, since 
each transformation matrixpremultiplies the vector arrived a t  in the previous 
step.] The result of multiplying the three matrices is 

I 
COS e COS yl cos e sin y, --sin e 

sin + sin 8 cos y sin + sin 8 sin y sin + cos 8 
k,, = - cos + sin y + cos 4 COS y ! (4.5,4) 

cos + sin 8 cos y cos + sin 8 sin y cos + cos 8 
+ sin 4 sin y - sin + eos y 

We shall also wish to make use of the matrix for transforming vectors 
from the frame E;y to FB, and this corresponds to  the sequence of rotations 
(X3, X2, XI) = (-j3, ax, 0) whence 

L~~ = L2(ax) ' %(-p)  
or 

cos a, cos j3 -cos u, sin j3 -sin a 

L~~ = sin cos j3 O (4.5,5) 

ax cos j3 -sin ocx sin j3 cos u, 
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4.6 TRANSFORMATION OF THE DERIVATIVE OF A 
VECTOR 

Consider a vector v that is being observed simultaneously from two 
frames Fa and Fb that have relative rotation-say Fb rotates with angular 
velocity w relative to Fa, which we may regard as fixed. The rotation does 
not invalidate the argument of Sec. 4.4, so that 

The derivatives of va and v ,  are of course 

= E] and Gb = [I (4 .61)  

where dra = (d/dt)(vGa), etc. It is important to note that Ga and 4, are not 
simply two sets of components of the same vector, but are actually two 
ddferent vectors. 

Now because F, rotates relative to Fa, the direction cosines lii are changing 
with time, and the derivative of (4.4,3) is 

= + Lbava 
or alternatively 

\;, = Labib + Labvb 

the second terms representing the effect of the rotation. 
Since L must be independent of v ,  the matrix Lab can readily be identified 

by considering the case when v, is constant, see Pig. 4.12. For then, from the 
fundamental definitions of derivative and cross product, the derivative of v 
as seen from Fa is readily shown to be 

dv - F w x v  
at 

The matrix equivalent of (4.6,3) is 
. - va = wava 

where 

0 - 

0 
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FIG. 4.12 Rotating vector of constant magnitude. 

The corresponding result from (4.6,2) is 

V a  = 'abvb 

It follows from equating (4.6,4) and (4.6,5) that 

for all v,. Whence 

' ab  = &aLab 

and &a = 'abkba 

Finally if the above argument be repeated with F, considered fixed, and & 
having angular velocity --a, we clearly arrive a t  the reciprocal result 

From (4.6,6) and (4.6,7), recalling that Q is skew-symmetric so that QT = 
-6, the reader can readily derive the result 



1 20 Dynamics of atmospheric $flight 

From (4.6,2), (4.6,6), and (4.6,7) we have the alternative relations 

with two additional permutations made possible by (4.6,8). A particular 
form we shall finally want for application is that which uses the components 
of Ga transformed into F a ,  viz. 

= ib f Gbvb (4.6,10) 

4.7 TRANSFORMATION OF A MATRIX 

~ ~ u a t i o n  (4.6,8) is an example of the transformation of a matrix the 
elements of which are dependent on the frame of reference. Generally the 
matrix of interest A occurs in an equation of the form 

where the elements of the (physical) vectors n and v and of the matrix A 
are all dependent on the reference frame. We write (4.7,1) for each of the 
two frames Fa and F b ,  i.e. 

v a  = Aaua (a)  

V b  = A b ~ b  (b )  (4.7,2) 
and transform the second to 

'bava = AbEbaua 

Premultiplying by Lab we get 

va = 'abhLbaaa 

By comparison with (4.7,2a) we get the general result 



General equations of 
unsteady motion 

C H A P T E R  5 

The basis for analysis, computation, or simulation of the unsteady motions 
of flight vehicles is the mathematical model of the vehicle and of its sub- 
sidiary systems, i.e. their general equations of motion. Although a useful 
first step is to treat the vehicle as a single rigid body, and many important 
results can be derived from this model, we cannot in general avoid facing 
up to the reality of the situation, which is that vehicles are deformable and 
contain articulated or rotating subsystems such as control surfaces and 
engines. Furthermore the external forces and couples that act on aircraft 
and spacecraft are in general complicated functions of shape and of motion. 
This is especially true of the aerodynamic forces in atmospheric flight which 
are known only approximately. The attention that must be devoted to  
their representation dominates the formulation of the mathematical model. 
The forces and couples provided by the space environment (gravitational, 
magnetic, radiation pressure) are generally not so uncertain, and the problem 
of deriving an adequate mathematical model is consequently less difficult 
for spacecraft during extra-atmospheric operation. 

In  the following sections, we first treat the general motion of a particle 
over the rotating Earth, then derive the dynamical and kinematical equations 
for an arbitrary deformable vehicle in flight. Finally the equations for 
small disturbance from steady flight are presented in both dimensional and 
nondimensional form. 
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5.1 VELOCITY A N D  ACCELERATION I N  A N  
ARBITRARILY MOVING FRAME 

All of the reference frames with which we are concerned, except PI of 
course, are in motion relative to inertial space. PW and Fg in particular 
have quite arbitrary motion, including acceleration of the origin, and rotation. 
Since in many applications, we want to express the position, inertial velocity, 

FIQ. 5.1 Moving coordinate system. 

and inertial acceleration of a particle in components parallel to the axes of 
these moving frames, we need general theorems that allow for arbitrary 
motion of the origin, and arbitrary angular velocity of the frame. These 
theorems are presented below. 

Let PM(Oxyz) be any moving frame with origin a t  0 and with angular 
velocity o relative to PI. Let r = r, + rf be the position vector of a point P 
of PM (see Fig. 5.1). Then the velocity and acceleration of P relative to E; 
are 

We want expressions for the velocity and acceleration of P in terms of the 
components of r' in F M ,  Expanding the first of (5.1,l) 

where v, = i, is the velocity of 0 relative to PI.  The velocity components in 
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F M  are given by 
.I 

V M  = LMIVI = L f i f ~ ( ~ ~ ,  + = vo, + L J ~ I ~ I  
From the rule for transforming derivatives (4.6,10) 

L ;-; 
M I  I - M f- QMrk (5.1,3) 

whence 
.I 

v M  = vOM + r ~ f  + QM& (5.1,4) 
The first term of (5.1,4) is the velocity of 0 relative to FI ,  the second is 
the velocity of P relative to F M ,  and the last is the "transport velocity," 
i.e. the velocity relative to P I  of the point of FM that is momentarily 
coincident with P. The total velocity of P relative to F,  is the sum of these 
three components. Following traditional practice in flight dynamics, we 
denote 

(When necessary, subscripts are added to the components to identify 
particular moving frames.) 

The scalar expansion of (5.1,4) is then 

These expressions then give the components, parallel to the moving coordinate 
axes, of the velocity of P relative to the inertial frame. 

On differentiating v I  and using (5.1,4) we find the components of inertial 
acceleration parallel to the FM axes to be 

= LMIbI = bM + QAfvnl 
- - io, + P h  + &Nr>f + QM& f & J ~ v , ~  + QM& + Q M Q M r k  

- - ao, f f- & M F ~  + 2 ~ ~ 2 ~  + QMGjMrk (5.1,7) 
where a,, = Go, + QMvo, = LMI% is the acceleration of 0 relative to FI .  

The total inertial acceleration of P is seen to be composed of the following 
parts : 

a,: the acceleration of the origin of the moving frame 
P': the acceleration of P relative to the moving frame 

&rl: the "tangential" acceleration owing to rotational acceleration of 
the frame F M  

26;' : the Coriolis acceleration 
QOrl: the centripetal acceleration 
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Three of the five terms vanish when the frame F ,  has no rotation, and only 
f' remains if i t  is inertial. Note that the Coriolis acceleration is perpendicular 
t o w  and it, and the centripetal acceleration is directed along the perpen- 
dicular from P to o. The scalar expansion of (5.1,7) gives the required inertial 
acceleration components of P as 

5.2 ANGULAR VELOCITIES OF THE SEVERAL REFERENCE 
FRAMES 

Since the formulae for velocity and acceleration given above involve the 
angular velocity of the moving frame, we need convenient expressions for 
the angular velocities of the frames we shall be using. These expressions are 
developed below. 

ANGULAR VELOCITY clpE OF FE A N D  FEC 

The motion of the Earth consists of a superposition of rotation on its axis, 
precession and nutation of its axis, rotation in its orbit around the sun, 
and additional motions of the solar system and the galaxy. Although any of 
these may be significant for problems of space fight, only the first-mentioned 
is likely to be of any importance for atmospheric flight, and even that one 
is often negligible We shall assume therefore that the Earth's axis is fixed 
in inertial space, and that its motion is one of constant rotation a t  speed 
oE on this axis. I ts angular velocity vector is (see Pigs. 4.2 and 5.2) 

cos a 
wEEC = 

-sin 1 

where wE is the rate of rotation, one revolution per day, or 7.27 x rad/ 
sec, aE is the latitude of OE, and 1 is the latitude of 0,. 

ANGULAR VELOCITY w v  OF F, 

Let the origin of F ,  be a t  (1 ,  p )  a t  time t ,  and let it, in time at, undergo 
infinitesimal displacement to (1 + 61, p + 6p) .  It can be carried from its 
initial to its final positions by the two rotations (i)-61 around an axis 
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Reference 
meridian 

is 
FIG. 5.2 Geocentric polar coordinates. 

through the Earth center parallel to Ovyv and (ii) 6p around OEc~Ec.  
Hence the angular displacement relative to Earth is given approximately 
by the vector 

6n = -j, 61 + k,, 6p (5.23) 

where jv and kEC are unit vectors on Ovyv and OECzEC, respectively. The 
angular velocity of Pv relative to F E  is then exactly 

6n wV - wE = lim - = -jvA + kEc& 
at-o 6t 

On taking components of (5.2,3) in Fv, and using (5.2,l) we get 

(wE + &) COS a 
wvv= [ -; ] (5.2,4) 

-(aE + f i )  sin il 

The components of wV in Fw or FB are, of course, obtained by premultiplying 
(5.2,4) by Lwv or LBV, respectively. 

ANGULAR VELOCITIES wW, w OF Fw, FB 

The orientation of the moving frames FW and FB are given relative to Pv 
by the Euler angles y ,  8, 4 (Sec. 4.3). Subscript W denotes Fw and no sub- 
script denotes FB. The result is derived below for FB, that for Fw being 
similar. 

With reference to Pig. 4.9, let 2 ,  j, k be unit vectors of FB, the subscripts 
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V, 2, 3 denoting the directions of the axes shown in the figure. By an argu- 
ment identical with that for (5.2,2) and (5.2,3) we have the relative velocity 

o - o v = i + + j 3 e + k 2 y  (5.2,5) 

By applying (4.5,2) (an exercise for the reader), the components of i, j,, 
and k, in FB are found to be 

It follows that o - ov is given by 

+ - y sin 8 

(5.2,7) 

where capital letters denote the components of the relative angular velocity. 
When oV and oE are both negligible, then [P, Q, R] = b, q, r ] ,  the angular 
velocity of FB relative to E;. Equation (5.2,7) can be written as the matrix 
~ r o d u c t  

where 

r 0  -sin 0 

R = 0 cos + sin $ cos 0 1 10 -sin 4 cos 4 cos e l  
Inverting (5.2,Sa) we get the Euler angle rates as 

Adding the subscript W in (5.2,s) and (5.2,Q) to [P, Q, R],  [$, 0 ,  y ]  gives 
the corresponding wind-axes equations. Note that these are transcendenta,l 
differential equations for the Euler angles, and as such have exact analytical 
solutions only in special simple cases. Note also that the transformation 
matrix R, unlike L, is not orthogonal. 
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Equations (5.2,9) can be used to calculate the Euler angle rates from the 
relative angular velocities (P,  Q, R). The latter can in turn be found from 
the "absolute" rates (p, q, r)  by the first equality of (5.2,7), and (5.2,4), i.e. 

(5.2,lO) 

-(wE + f i )  sin il. 

with a similar equation for wind axes obtained by adding the subscript W 
and substituting Lwv for LBV. 

THE DIRECTION COSINE RATES 

When the direction cosines of the moving frame are used instead of the 
Euler angles to define its orientation relative to F,, then the differential 
equations needed follow directly from (4.6,7). Let LBV = [E,,] (the same 
treatment holds for LwV) Then from (4.6,7) 

These constitute nine differential equations for the nine l i j .  Actually only 
three of the nine are independent (a rigid body has only three rotational 
degrees of freedom), and the additional six equations provided by (4.4,8) 
reduce the number of independent lii to three. In the force equations given 
later, the direction cosines that would replace the Euler angle terms are 
those for the angles between the moving axes of Fw and zv, i.e. (with l i ,  
now denoting components of Lwv) 113, I,,, and I,,. The differential equations 
for these are, from (5.2,11), 

and for some problems only these three direction cosines are needed. Whether 
direction cosines or Euler angles are preferable in any particular application 
depends on the situation, and on the kind of computing machinery to be used. 
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THE AERODYNAMIC ANGLE RATES 

We shall find it  convenient later to  have the angular velocity of FB 
relative to FW expressed in terms of the derivatives of the aerodynamic 
angles. 

Let jB  and kw be unit vectors in the directions of GyB and CxW, respectively. 
Then it  follows from the definitions of a, and f i  (See. 4.3) [and an argument 
like that for (5.2,3)] that the angular velocity of FB relative to FW is 

Taking the components of (5.2,12) in FW we have (see also Sec. 4.2,5) 

After expansion, this gives the scalar equations 

pw = p cos a ,  cos f i  + (q - 6,)  sin f i  + r sin or, cos j3 ( a )  
qw F -p  cos a ,  sin f i  + (q  - oi,) cos f i  - r sin a, sin f i  (b )  (5.2,14) 
rW = -p  sin a, + r cos a, + B (c) 

From the last two of (5.2,14) the values of k, and 1 are conveniently ex- 
pressed in terms of the angular velocities of FB and FW as 

oi? = q - qw sec f i  - p cos a ,  tan f i  - r sin a ,  tan j3 ( a )  
/3 = rw + p sin cc, - r cos a ,  ( a )  (5 .235)  

The group of three equations actually wanted subsequently is (5.2,14a) and 
(5.2,15). 

Since (5.2,12) may alternatively be written 

it follows that (5.2,13) through (5.2,15) apply equally when the angular 
velocities of FB and FW are relative to PV instead of PI- Then the lower-case 
(p, q, r) are replaced in them by (P, Q,  R). 
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5.3 POSITION, VELOCITY, AND ACCELERATION OF 
THE VEHICLE MASS CENTER 

POSITION AND VELOCITY RELATIVE TO THE EARTH 

The location of the vehicle mass center relative to Earth is given by the 
spherical polar coordinates 92 (geocentric radius), ,u (longitude), and 1 
(latitude). Their rates of change are related to the Fv components of velocity 
relative to Earth by (see Fig. 5.2) 

1 p=- 
92 cos a vEwv 

The components of vE are in turn given by [see (4.2,1)] 

VEv = LVW(VW + WW) = LvB(~B + wB) (5 .33  
where 

and V is the airspeed of the vehicle, i.e. its speed relative to the atmosphere. 
When the atmosphere is at rest relative to Earth, W = 0 and (5.3,2), (5.3,3), 
and (4.5,4) yield 

VE," = v cos ow cos y, 

VEVv = V cos 0, sin yw (5.3,4) 

VEZr = -V sin Ow 

Substitution of (5.3,4) into (5.3,l) provides the polar coordinates in the 
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more convenient forms 

W = V sin Ow 
V 

f i  = - cos Ow sin yw sec 1 
9 

Using the body-axis velocity componentsanalternative systernof equations 
is 

When the motion considered takes place over only a small portion of the 
Earth's surface, the latter may be regarded as locally flat, and the vehicle 
position is then more conveniently referenced to a frame FE located in its 
immediate vicinity-for example, at  the initial point of the trajectory. In  
this case Fv may be assumed parallel to FE, and the position coordinates 
of the mass center (xE, yE, zE) are governed by the differential equations 

k ,  = V cos Ow cos yw 
yE = V cos Ow sin yw 
iE = -V sin Ow 

INERTIAL ACCELERATION 

We have two particular requirements for the inertial acceleration of a 
particle in a moving reference frame : one is for the Fw or FB components of 
the acceleration of C or Or, the vehicle mass center, and the other is for the 
FB components of the acceleration of a particle in arbitrary motion relative 
to the vehicle. Other reference frames may be of interest for application to 
special dynamics problems, or for the analysis of navigation and guidance 
systems in which expressions are needed for the outputs of accelerometers 
mounted on inertial platforms that are oriented in accordance to some 
particular navigation scheme. The two applications f i s t  mentioned above 
are developed here; and as a matter of interest, we give also the formulation 
needed for a particular navigation application. 

Acceleration of C. The basic equation for the inertial acceleration of the 
mass center is (5.1,7), in which the moving point is Or, in the rotating frame 
FE. i f  is then the velocity of the mass center relative to Earth, which we 
have denoted vE. We assume here, as in Sec. 5.2, that the Earth's axis is 
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fixed in inertial space, and that cb = 0. Thus the acceleration a, of the origin 
of FE is the centripetal acceleration associated with Earth rotation. A numeri- 
cal comparison shows that this acceleration is usually negligible when com- 
pared with g. It is zero at the poles, and of order 1/1OOO g a t  the equator 
(sea level). The same holds true for the centripetal acceleration Q t r '  of 
(5.1,7)-i.e. i t  is usually negligible. Of the two terms that remain in (5.1,'7) 
'J.' = vE and the Coriolis acceleration is 2QEvE. The latter depends on the 
magnitude and direction of the vehicle velocity, and is a t  most 10% g a t  
orbital speed. It can of course be larger a t  higher speeds. This term must 
therefore be kept in the mathematical model, even though it is a t  times 
negligible. Finally then, the approximation we use for the acceleration of C is 

To transform (5.3,s) into the moving frame Fw we use (4.6,lO) noting that 
the angular velocity of Fw relative to FE is ( o w  - oE) to obtain 

The Iast term is treated as follows: 

whence 
a,.,., = iEW + (QW - QE)WVEW + 2GEWVEW 

= vEW + (GW + QE)WVEW (5.3,ll) 

To obtain the scalar expansion of (5.3,11) we note that vEW is given by 
[see (5.3,3)] 

(5.3,12) 

wWw is given by 

and [see (5.2,1)] 

where the notationpEw etc. identifies the components of oE in the frame Fw. 
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When the atmosphere is at  rest, W = 0 and the components of (5.3,11) are 

[Note that oE and ow are both angular velocities relative to inertial space, 
and that the sum (rEW + rW) for example, is not the resultant yaw rate of 
FW relative to E;, as one might be tempted to infer from (5.3,15).] 

For the frame FB, the same procedure yields instead of (5.3,11) 

The scalar components of the vectors of (5.3,16) are 

Again for a stationary atmosphere, (5.3,16) is expanded with the aid of 
(5.3,17) to give 

acz = zi + (q + qEBlw - ( r  + rEB)v 

ac, = '6 + ( r  + rEB)u - ( p  $ pEB)w (5.3,18) 

"a, = + ( P  + pEBlv - (4 + qEBlu 

Acceleration of a Particle in FB. A particle having coordinates (x, y, z )  
in T B  has inertial acceleration components in the directions of the axes of 
FB given by (5.1,8), in which a, is the inertial acceleration of the origin of 
FB and (p, q, r )  are the components of W. Since the origin of FB is the vehicle 
mass center then a, = ac and its components are those given above in 
(5.3,18). The required equations are then obtained by substituting (5.3,18) 
for a, in (5.1,s). 

The Navigation Case. From the general relations already given, i t  is a 
straightforward, although tedious, calculation to derive the equations for the 
acceleration components aV of a moving particle. This particular set of 
components is that measured by an inertial navigation system in which 
accelerometers are mounted on a stabilized platform that is "Schuler tuned" 
to maintain one axis vertical, and is "torqued7' to maintain one horizontal 
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axis directed north. In the navigation application, the accelerations of interest 
are very small, and are in effect integrated twice over long periods of time 
to give position. Thus the small centripetal acceleration [the last term of 
(5.1,7)] is not negIigible, and the complete equation must be used. The 
acceleration of the origin of Fv (which may be taken to be the location of 
the inertial platform in this application) is then [cf. (5.3,8)] 

= VEE - (QEijEkvW)E + 2QEEVEE (5.3,19) 

where kv is a unit vector on CzV, and the second term is the centripetal 
acceleration previously neglected. After transforming to Fv, i.e. aov = Lmaoz, 
(5.3,19) gives 

- vEV + (ijV - ijE)vVEy - (ijEQEkvW)V + 2QEvVEv (5.3,20) aov - 
oVv and oEV are given respectively by (5.2,4) and (5.2,1), and from (5.3,l) 

W i  

VEv = W p  COS A [-&I 
The components of the unit vector kV in Fv are of course [0, 0 ,  11. After 
substituting the above expressions into (5.3,20) and expanding the mat- 
rices, the following system of equations in (@, A, p) are obtained: 

a = W;i + 2&i + W sin A cos A(wE + p)2 
O='v 

a = W cos A; + 2(wE + p)(& cos il - W i  sin A) (5.3,22) 
O"v 

a = - & + WA2 + W cos2 A(wE + P ) ~  
O z v  

When accelerometers provide measurements of the 1.h.s. of (5.3,22), a 
navigation computer can in principle solve the three equations for 
the geocentric position (W ,  A, p).  For horizontal flight or when & can be ne- 
glected, the result is simpler, i.e. 

a = @/i + @ sin il cos A(mE + pI2 
O s v  (5.3,23) 

a = - W cos Ap - 2(wE + p)Wi  sin il 
O u v  

This is a pair of equations for the latitude and longitude of the vehicle. 
To mechanize them for analog or digital computation, they would be more 
conveniently rearranged as 

" 1 
il = - a - sin A cos A(wE + ,h)2 9 OXv 

(5.3,24) 
1 

,ii = -see Aa + 2(wE + ,h)X tan 2 
W 0 g v  
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5.4 EQUATIONS OF MOTION OF AN ARBITRARY 
SYSTEM 

The equations of motion result from the application of Newton's laws of 
motion to the material system that constitutes the flight vehicle. Consider 

FIG. 5.3 Application of Newton's Law to an element of a body. 

an element of mass dm, and an inertial frame of reference & (see Fig. 5.3). 
(Since only one reference frame is used in the following argument, no identi- 
fying subscript is appended to the vector symbols. The subscript I should 
be understood.) Newton's second law provides the equation of motion of 
dm, i.e. 

d f = F d m = i d m  (5.431) 

Here df is the resultant of all the forces acting on dm, r is its position vector, 
and v its velocity. I n  this form, the equation is valid only in an inertialframe 
of reference. 

Taking the cross product of (5.4,l) with r yields the moment equation 

Now let the angular momentum of dm w.r.t. 0 be defined as 

d h ' = r  x vdm (5.4,3) 
It follows that 

d - (dh') = (E x v + r x .ir) dm 
at 
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Since v  x v = 0 ,  

which is the r.h.s. of (5.4,2). We therefore have 

I d  dG = - dh' 
dt 

(5.494) 

where 
d ~ '  = r  x df (5.4,5) 

is the moment of d f  about 0. 
We now integrate (5 .4 , l )  and (5.4,4) for a system of particles comprising a 

general deformable body of mass m. First we note that the mass center C of 
the body is located a t  rc, given by 

mrc = r d m  S (5.4,6) 
Differentiating once yields 

and a second time 

where vc and ac are respectively the velocity and acceleration of the mass 
center relative to  F p  The integral of (5 .4 , l )  is obtained from (5.4,8) as 

where f = j d f  is the vector sum of all the forces acting on all the elements. 
Since the internal forces, those which one element of the system exerts upon 
another, occur in equal and opposite pairs by Newton's third law of motion, 
they vanish from S d f :  f is then the resultant external force acting on the 
system m. Similarly, the integral over m  of (5.4,4) is simply, 

where G' = J r  x d f  is the resultant external moment about 0, and 

h ' =  r  x v d m  S (5.4,lO) 

is the resultant angular momentum about 0. Let 

r = r c + R  (5.4, l la)  
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as shown on Fig. 5.3. Note that from (5.4,6) 

S Rdm=O 

Then we may expand (5.4,gb) as follows: 

Since rc is constant, it can come outside the integrals, to give 

From (5.4,8) and (5.4,9) the leading terms on the 1.h.s. and r.h.s. are seen to 
be equal, so the equation reduces to 

where 

and 

h =  R x v d m  (c) I 
are, respectively, the moment and angular momentum about C. Note that 
(5.4,9b) has the same simple form as (5.4,12) even though the former is 
referenced to a fixed point in inertial space, and the latter to a moving 
point, the mass center. This simple form does not hold, for arbitrary motion 
of the systems, for any moving reference point except the mass center. 

Equations (5.4,9) and (5.4,12) are the two fundamental vector equations, 
equivalent to six scalar equations, that relate the "gross" motion of the body 
to the external forces that act on it. The description of the "fine" motion 
(distortion and articulation) requires additional equations that are given 
subsequently. 

THE ANGULAR MOMENTUM 

With components in Fz, the angular momentum of the general deformable 
body is from (5.4,12c), on converting to matrix notation, 
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It is not convenient, as will be seen later, to have the angular momentum 
components referred to fixed axes. In fact we want its components along 
the axes FB, attached to the moving vehicle. From (4.6,10) 

whence (5.4,13) gives the components of h in FB as 

Now the matrixg transforms according to the rule (4.7,4), so that LB,kILIB = 
gB. and we get for hB 

When the body is rigid, RB = 0, and the first term vanishes. [Note that 
JkB dm vanishes in any case because the origin is the mass center, see 
(5.4,11b).] The second term of (5.4,15) is therefore identified as the "rigid-body 
component" of h, and the first term as the "deformation component." To 
evaluate the second term, we note that QR = -ka (Since w x B = -B x w) 
and hence 

Since QB is constant with respect to the integration, we may write 

where 

(note the identity gk = R ~ B P  - RR~). After expansion of (5.4,18a) and 
integration we get 

The two notations for the elements o f 9  given in (5.4,183) are both traditional 
and in current use in flight dynamics literature. These elements are the 
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moments and products of inertia, i.e. 

I ,  = A = (y2 f z2) dm, etc. S 
I,, = F = xy dm, S etc. 

Note that the inertia matrix transforms according to (4.7,4), so that for two 
reference frames lPBl and FBz we have 

For any 9Bl, there always exists a transformation LBlB2 that produces a 
diagonal matrix 9Bz (see ref. 5.1). lrBz is then a set of principal axes, for 
which the products of inertia all vanish. When the vehicle has a plane of 
symmetry, then the x and z principal axes lie in it. If the body axes FB are 
obtained from the principal axes by a rotation E about Cy, the elements of 
9B are found from (5.4,20a) to be 

I, = Ix, C O S ~  E + I,, sin2 E 

I, = I,, 
I, = Ix, sin2 E + I,, cos2 E 

I,, = $(I2, - I%) sin 2 E  

IXY = Ivr; = 0 

where the subscript p denotes principal axes. 
Let us denote the deformation component of h by 

so that (5.4,15) gives the total angular momentum 

From (5.4,21) we can evaluate hg as 
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ROTATING SUBSYSTEM 

When the relative motion in question (i.e. of the system w.r.t. ElB) is that 
of a rigid rotating subsystem (such as an engine rotor or propeller in an air- 
craft or an inertia wheel in a spacecraft) with angular velocity or relative 
to the main body, then we have, over the spinning component, 

where RrB is the position vector of a mass element relative to an origin 
anywhere on the axis of rotation. Ordinarily the mass center of the spinning 
body lies on its axis, and this is the natural choice of origin for RrB. In that 
case it is easily shown (an exercise for the reader) that the contribution of 
the rotor to h*, denoted hr, is 

hrB = 9rB~rB (5.4,24) 

where PB is the inertia matrix of the rotor with respect to centroidal axes 
parallel to those of ElB. If moreover the spin axis is a principal axis of inertia 
of the rotor the vector hr is collinear with d, and has magnitude Irmr where 
IT is the moment of inertia of the rotor about the spin axis. Naturally, 
there is one term like (5.4,24) for each rotor. 

THE REMAINDER OF h* 

The remainder of h* ordinarily comes from the motion of hinged parts 
and from elastic deformation, although there are other kinds of possible 
relative motion, such as fuel sloshing which is important in liquid-fueled 
rockets (ref. 5.14). This total remainder is denoted by he. We now show that 
i t  is possible always to choose a set of body-axes FB for which he vanishes. 
These are termed "mean axes" by Milne (ref. 5.2). 

Consider two centroidal reference frames FBI and ElB2 for which the angular 
momenta are 

Here the summations are the contributions of spinning rotors, R in the inte- 
grals represents the residual relative motion, and A o  is the angular velocity 
of FBZ relative to FBI. The first term of (5.4,25b) can be transformed as 
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follows: 

Applying (5.4,17) to the last term, we get 

It follows that the angular momentum heB2 of the distortional relative motion 
vanishes in FB2 if 

P 

Equation (5.4,27) provides the condition that the axis system ElB2 must 
satisfy if the angular momentum laBz referred to it is to have the form 

This condition will be met when FB2 has the orientation required by LBIB2(t) 
that satisfies the differential equation [see (4.6,6)] 

'BlB2 = A % , k ~ 1 ~ 2  (5.4,29) 

It is not necessary actually to solve (5.4,27 and 29) for EBIBz in order to 
make use of mean axes. Our concern here is simply to establish their ex- 
istence. We note that when the body axes are mean axes, the following 
relations must hold for the distortional motion. Since the origin is the mass 
center, 

2' dm = y' dm = i' dm = 0 (a) S S 
a d  from (5.4,23) (5.4,30) 

S (yi' - y'x) dm = (22' - i'x) dm = (xy' - 2 y )  dm = 0 ( b )  S S '  
in which the prime denotes the distortional component of the velocity 
relative to FB. The use of mean axes, and the consequent elimination of 
distortional contributions to h* has the effect of eliminating the main inertial 
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coupling between the distortional degrees of freedom and those of tihe rigid 
body. Some coupling still remains through 3 however, see (5.6,7). 

5.5 FORCE EQUATIONS IN WIND AXES 

The force equation of motion is (5.4,9). In  wind axes i t  becomes 

with aCw given by (5.3,ll). For the particular case of a stationary atmosphere 
(5.3,15) gives the acceleration components, so that the scalar equations of 
motion are 

f z ,  = mv 

fg, = mV(rEw + rw) (5.5,l) 

f Z w  = - n W E w  + !I,) 
Although all the terms of (5.5,1) may be needed for applications to  

hypervelocity flight, there are numerous exceptions in which the Earth 
rotation can be neglected. The result is then much simpler, viz. 

f z ,  = mP 
f z l ,  = mvrw 
f = -mVq, zw 

Not only is (5.5,2) simpler in form than (5.5,1), but the angular velocities 
rw and qw that appear in i t  are those of Fw relative to Earth and not to 
inertial space, and are themselves correspondingly simpler. 

THE FORCE VECTOR 

The force vector for atmospheric flight consists of two parts, the aero- 
dynamic reaction (including propulsive force) A, and the weight mg, i.e. 

I n  the wind-axis system Fw, the components of A are given by 
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It is convenient further to subdivide A into the "configuration aero- 
dynamic&" and the propulsive force thus 

Where D is drag, C is side force, and L is lift. The directions of D, 6, L 
relative to the vehicle are illustrated in Figs. 4.4 to 4.6. The separation 
of the thrust from the other forces is to some extent always arbitrary, but 
is nevertheless useful. Any of the components of T may be large when we 
consider the flight of rockets or of V/STOL aircraft, although in the cruising 
flight of airplanes only Txw is usually significant. Finally the gravity force 
is given by 

and 

In  terms of the wind-axes Euler angles? this becomes, from (4.5,4) 

so that the expanded set of scalar equations is 

TVw - C + mg cos Ow sin #w = mV(rEw + rw)  (a) (5.5,g) 

T zw - ~ + m g c ~ s e w c o s ~ w = - ~ v ~ ~ E w + ~ w ~  ( c )  

The terms rEw and qEw will vanish when Earth rotation is negligible. 
The above equations are most conveniently regarded as having the primary 

dependent variables V, T,, q,. However they are not complete in the sense 
that the aerodynamic and thrust forces contained in them are functions 
not only of the above three variables, but also of pw, and of the aerodynamic 
angles a and (see Sec. 4.3). The moment equations and some additional 
kinematic relations must be used to complete the .mathematical system; 
these are presented in the following sections. Little use has been found for 

The elements of LWy, i.e. the direction cosines of PW, can be used as the orientation 
unknowns instead of the Euler angles, see Sec. 5.2. 
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the moment equations in the Fw frame, and these are given below only 
for PB. 

5.6 FORCE AND MOMENT EQUATIONS IN BODY AXES 
(EULER'S EQUATIONS) 

The force equation of motion in FB is [see (5.4,9)] 

fB = maC, 

with acB given by (5.3,16). Again particularizing, as in Sec. 5.5, to the case 
of a stationary atmosphere, (5.3,18) give the required components of acceler- 
ation. With the aerodynamic force in body axes denoted by 

in accordance with traditional usage, and treating gravity as in Sec. 5.5, 
the scalar equations become 

X - mg sin 8 = m[zi + (qEB + q)w - (rEB + r )v ]  

y + mg cos 8 sin C$ = m[d + (rEB + r)u - ( p E ~  + P)W]  (5.6,2) 

Z + mg cos 8 cos 4 = m[io + ( pEB + p)v - (qEB + q)uI 

Again, when the Earth rotation can be neglected entirely, (pEB,  qEB, rEB) 
vanish. 

The moment equation in frame FI is (5.4,12), i.e. 

GI = hI (5.693) 
or in body axes, 

GB = 1LB,GI = hB + i j ,hB ( 5 6 4 )  

The conventional notation for GB and hB is 

[despite the fact that L is also used for lift (5.5,5)].  In atmospheric flight G 
normally comes from aerodynamic, propulsive, and control forces; in space 
flight however, magnetic forces, solar radiation pressure, and gravitational 
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torques may all contribute importantly to it. The scalar expansion of (5.6,4) is 

L = h, + qh, - rh, 

M = )i, + rh, - ph, 

N = A, + ph, - qh, 

When mean axes are used, (5.4,28) gives hB, and in that case (5.6,4) can 
be expressed as 

Note that in (5.6,7) the rotation of the Earth does not appear explicitly, 
even though no assumption has been made concerning it. It does however 
occur implicitly in o, which is the angular velocity of FB relative to inertial 
space. The matrix expansion of (5.6,7) is 

Owing to its length, there is little advantage in presenting the full scalar 
expansion of the complete equation (5.6,8). For the restricted case in which $ 
is negligible, and there are no rotor terms, that is, for a rigid body, it is 

+L = In@ - IyB(q2 - r2) - + pq) - I,&q - rp) - ( I y  - I,)qr 
M = - I 2  - P - , (  + ) - I ( +  - p - ( I  - p (5.6,9) 

N = I,? - IzY(p2 - q2) - I,,(q + rp)  - I,,(p - qr) - ( I ,  - I,)pq 

It is usually the case for flight vehicles that C2z is a plane of symmetry. 
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In  that case I,, = I,, = 0, and (5.6,9) simplify to 

L = IXP - -k pq) - (Iy - I,)qr 
M = Iyq - I,,(r2 - p2) - (I, - I,)rp (5.6,lO) 

fl= I,+ - IZX(P - qr) - (Ix - Iy)pq 

Finally, when the axes are principal, I,, as well vanishes, and we obtain the 
simplest form of the moment equations 

L = Ixp - (Iy - I,)qr 

M = I,uq - (I, - Ix)rp (5.6,ll) 

N = I,+ - (Ix - Iu)pq 

5.7 DISCUSSION OF THE SYSTEM OF EQUATIONS 

We have presented in the preceding sections a large number of complicated 
coupled equations that describe the kinematics and dynamics of a vehicle 
in flight over a spherical rotating Earth. (The student may be forgiven if 
he is slightly bewildered by them at this point!) Our purpose here is to 
evaluate these equations, show the relationships between them, and present 
the essential structure of the system. 

Much of the complexity has resulted from the inclusion of the rotation 
of the earth (the oE terms) and its curvature (the oV terms) in the mathe- 
matical model. We have already shown (Sec. 5.3) that  the centripetal 
acceleration associated with oE is usually negligible, and that the Coriolis 
acceleration is small but not quite negligible. To gain further insight into 
the oE and wv terms we look at the x component of the force equation for 
horizontal flight on the equator. Thus with Ow = q5, = 0, (5.5,8c) gives 

E -L + Tzw + mg = --mV(q w + qw) (5.7,l) 

With yw = 90" for eastward flight and 1 = 0, (5.3,14) and (4.5,4) yield 

Since the Euler angles are constants, then from (5.2,8) Pw = Qw = Rw = 0, 
and from (5.2,10) 

qw = -(aE + P) (5.7,3) 

From (5.3,5), P = VIW, so that finally (5.7,1) becomes 
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The first term on the r.h.s. is the Coriolis force due to  Earth rotation, and 
when V equals orbital speed (about 26,000 fps) amounts to about i$ rng. 
The second term is due to  Earth curvature (in the "flat" Earth approxi- 
mation 9 = co and this term vanishes), and a t  orbital speed makes up the 
balance, about 90 %, of mg. [Note that V is speed relative to ElE, not relative 
to  E;, and that the exact form of (5.7,4) would have the additional small 
term +rn90E2 on the r.h.s.1 Both terms on the r.h.s. of (5.7,4) increase 
with speed, the first linearly, the second quadratically, and each amounts to 
1 % of the weight when the speed is about of orbital speed, i.e. about 
2600 fps for atmospheric flight. This speed therefore seems a useful boundary 
below which both oE and ov can be neglected, and above which they should 
be included for accurate results. It corresponds to a Mach number of about 
24 to 3, depending on altitude, so that a t  low supersonic speeds, as for first 
generation supersonic transports, these terms are just marginally small- 
perhaps not quite negligible for range calculations. For all high supersonic 
speeds and hypersonic speeds they would be of increasing importance. 

The preceding argument, being based on the force equation of motion, 
has validity only for trajectory calculations, i.e. for calculations of the flight 
path. When the problem of interest concerns attitude dynamics, i.e. the 
relatively rapid rotational motions of the vehicle relative to FV, the situation 
is quite different. For then oE and ov can be important only if they are 
appreciable compared to o (greater than 1 % say). Now oE m 7 x 
rad/sec is extremely small compared to most technically important vehicle 
rotations, and wv has a maximum value a t  orbital speed of about lo-:' 
radlsec which is also negligible in this context. Hence both oE and oV 
terms are normally negligible insofar as the moment equations are con- 
cerned. 

Two alternatives have been presented for the dynamical force equations: 
in  wind axes and body axes. Both are used in current practice, and there 
are no overriding advantages for either system. The wind-axes form is gener- 
ally more convenient for trajectory analysis, in which the attitude of the 
vehicle is prescribed a priori, and the moment equations are not used a t  all. 
For combined trajectory and attitude motions, either a "mixed" form of the 
equations, or the body-axes form, is normally employed. I n  hovering flight, 
when V = 0, and the angles a and are not defined, the body-axes form is 
virtually mandatory. It is convenient to use a particular mixed form of the 
force equations for the analysis of small perturbations from a steady reference 
state (see Sec. 5.10). 

On the other hand, there is only one reasonable choice for the moment 
equations. Only in FB is 9 constant for a rigid body. To use any other 
reference frame adds unnecessary complication. 
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Little has been said in the foregoing sections about the aerodynamic 
forces and momcnts that appear in the equations:,(D, C ,  L, and T) in (5.5,8), 
(X, Y, 2) in (5.6,2), and (L, M, N) in (5.6,8). These depend on the local 
ambient density, the motion of the vehicle relative to the atmosphere, and 
on nonautonomous control inputs. Thus for a rigid vehicle, they are functions 
(more exactly, functionals, see Sec. 5.10) of p(W) the density, of (8, or,, @), 
or (u, v, w), of (p, q, r),? and of a set of control variables. There are other 
ways, besidesits appearance in p, in which the altitude (i.e. a), can occur as a 
nontrivial independent variable in the equations. One is when there is a wind 
gradient with height, e.g. ErS(W), and another is when the vehicle flies close 
t o  the ground, so that there is a "ground effect" on the aerodynamic field 
of the vehicle. In  the latter case the aerodynamic forces can be very strong 
functions of height. A third case is when the gravitational inverse square 
law is included, i.e. g = g(9 ) .  For near-orbital velocities at very high 
altitudes, i t  has been shown (ref. 5.4) that this refinement is necessary. 

The structure of the mathematical system for a rigid vehicle ($ = 0) in 
the more general high-speed case, and the interrelations among the variables, 
is displayed in Figs. 5.4 and 5.5. Each set of scalar equations is regarded as a 
subsystem that produces three dependent variables as outputs. The inputs are 
the quantities needed to calculate the outputs from the given equations. 
All the quantities shown immediately to the right of the square blocks can 
be found by algebraic solution of the equations. The aerodynamic terms in 
the force and moment equations have all been replaced by the state variables 
of which they are functions, and control forces and moments. On checking, 
the reader will find that all the autonomous variables needed as inputs on 
the left-hand side are available as outputs on the right-hand side. 

To recapitulate, the mathematical models described by Figs. 5.4 and 5.5 
are subject only to the following assumptions 

(i) The Earth is a sphere rotating on an axis fixed in inertial space, and 
g is a radial vector. 

(ii) The centripetal acceleration associated with Earth rotation is neglected. 
(iii) The atmosphere is at  rest relative to the Earth. 
(iv) The vehicle is a rigid body. 

None of these restrictions is made from any fundamental necessity, and any 
of them may be removed when the application requires it, at  the cost of 
additional complexity. 

t Actually the angular velocity of the vehicle relative to the atmosphere is w - WE, 
and it is the components of this vector, not ( p ,  q, r), that strictly speaking should be 
used in the calculation of aerodynamic forces and moments. However wE is so small that 
in the majority of applications no significant error is incurred by neglecting it. 
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d +-. a 
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FIG. 5.4 Block diagram of equations for rigid vehicle. Spherical rotating earth. 
Combined wind and body axes. 

5.8 THE FLAT-EARTH APPROXlMATlON 

We have shown above that a wide and important range of flight dynamics 
problems, corresponding roughly to M < 3, can be treated adequately with 
a significantly simpler mathematical model than that given in Figs. 5.4 and 
5.5-that is, by neglecting wE and oV or alternatively by treating the Earth 
as a stationary plane in inertial space. The reduced equations obtained by 
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i -$-u 
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U, U, w &? -D-92 

8, 4, * 
Kinematics 

X 

FIG. 5.5 Block diagram of equations for rigid vehicle. Spherical rotating earth. Body 
axis system. 

neglecting all wE and w" terms in the more general ones are collected below 
for a rigid vehicle having a plane of symmetry. 

Txw - D - mg sin Ow = mv (a) 

Tvw - C + mg cos Ow sin 4, = mVrw (a) (5.W) 

TZw - L + mg cos Ow cos 4w = -mVqw (c) 

X - mg sin 8 = m(zi + qw - rv) (a) 

Y + mg cos 8 sin 4 = m(d + r u  - pw) (b) (5.83) 
Z + mg cos 8 cos 4 = m(w + pv - qu) ( G )  
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dw = pa. + qw sin +w tan Ow + rw cos $w tan Ow 
6 -  - qw cos +w - rw sin +w 

yw (qw sin +w + vW cos +W) sec Ow 
(Without subscript W, (5.8,4) apply to body axes.) 

& , = q - q w ~ e ~ ~ - p ~ ~ ~ a X t a n ~ - - r s i n c r , t a n ~  
1 = rW + p sin a, - r cos a, 

pw = p cos a, cos + (q - &,) sin f i  + r sin a, cos p 
gE = V cos Ow cos y, (a) 
yE = V cos Ow sin yw (b) 
iE = -VsinOw (c) 

Following traditional usage, L is used above as a symbol for both lift 
force and rolling moment. The context usually makes i t  quite clear which 

%> &W 
ZEI V, an B 

P, 9. r in Fw 

Control forces (5.8. 1) 

i -$-P 

P, 4. ,' in F, 6 .-D- 9 

Control moments F --[C- r 

GE --I-- X E  

Kinematics 
(5.8.6) 

?E ,-%-, Y E  

t -[C-% 

FIG. 5.6 Block diagram of equations for rigid vehicle with plane of symmetry. 
Combined wind and body axes. Flat-Earth approximation. 
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Control forces (5.8,2) & -p--w 

ZE,  yu,w i .-/$-b 

P, Q. r in FB 4 + - 4  

Control moments --D-r 

Kinematics i e 
P, 4, r It --$- $ 

u, U, W 'E 4w- XE 
Kinematics &' -$-' YE 

b, 0, i -D- ZE 

FIG. 5.7 Block diagram of equations for vehicle with plane of symmetry. Body axes. 
Flat-Earth approximation. 

is meant, and even the novice seldom has difficulty with this ambiguity. 
In  the nondimensional form of the equations, the ambiguity disappears, 
different symbols being used for the two quantities. 

The block diagrams for the above equations are given in Figs. 5.6 and 5.7 
for the combined and body-axes systems, respectively. Since in the case of 
body axes there are no kinematical relations needed to connect the two axis 
systems, the number of equations is twelve instead of 15. However the force 
equations (5.8,2) and the position equations (5.8,7) are then more complex 
than (5.8,l) and (5.8,6) which they replace, so the advantage resulting from 
the reduction of size is offset by greater complexity in the remaining members. 
The state variables of Figs. 5.6 and 5.7 are conveniently grouped for identi- 
fication as follows : 

(u, v, w) or (V, ac,, p)  give translation of vehicle relative to Earth. 

(P, 4, 4 give rotation of vehicle relative to Earth. 

(XE, YE, ZE) give position of vehicle relative to Earth axes. 

( 6 8 ,  Y) give angular orientation of vehicle relative to Fv. 

($w> %v~ YW) give orientation of wind axes. Ow = y is the 
angle of climb, and yw is the heading of flight 
path. 

(PW, qw, TW) give angular velocity of the wind axes. 
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5.9 STEADY STATES 

It is of interest to  deduce from the preceding general equations what 
"equilibrium points" exist for a flight vehicle. Neglecting motion of the 
Earth center, a true state of rest in inertial space occurs only when the vehicle 
travels due west a t  a rate exactly equal to that of the local eastward motion 
of the Earth. This is too restricted a case to be useful. Equilibrium in a more 
general dynamical sense corresponds to  equilibrium of all the external 
forces, i.e. a state of zero acceleration, or rectilinear motion. On a round 
Earth, this kind of equilibrium is also not useful, since the flight path would 
then either intersect the Earth, or go off into space. The useful definition 
is that of an "aerodynamic steady state," in which the motion, the aero- 
dynamic field, and gravity are all constant in the frame FB. Thus the aero- 
dynamic pressure distribution and the gravity components are constant with 
time. Such a state requires, first, that (u,  v, w) or (V, u,, j3) and the rates of 
rotation (w  - wE)B of FB relative to the atmosphere or to FE be constants. 
Second, the Euler angles 8, 4 that affect the gravity components must be 
constant. Constancy of aerodynamic forces at constant (V, u,, j3) also re- 
quires constant air density, i.e. constant altitude flight. Thus Ow = 0. Now 
consider the force equation (5.6,2). By postulate, the derivative terms are 
zero, and the left-hand side is constant. It follows that these equations can 
be solved for the constant values of 

Since the sum and difference (line 14 above) of aEB and wB are constants, 
then they must be separately constant. Since (u, ,9) and (p, q, r )  are constants, 
then from (5.2,13), (pw, qw, rw) are also constant, and transforming the 
constant oEB into Fw leads to a constant wEW. Now the components of 
w E  can be constant in Fw and/or FB, with the constraint of constant altitude, 
only if the motion of the frame is a rigid-body rotation around the Earth's 
axis. Thus the path of the vehicle mass center must be a circle around the axis, 
i.e. it must be a minor circle of the Earth, lying on a parallel of latitude. Analyti- 
cally this means that ;E = const, and y = f ~ / 2 .  The conditions for this 
most general steady state may then be summarized as follows, taking the 
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option yw = n/2 (eastward flight) : 

YW = ~ / 2  W = const 

8, = 0 I = const (5.9,l) 

From (5.2,8) 

From (5.2,lO) 

From (5.3,14) 

The wind-axis force equations (5.5,8) then reduce to 

T - D = 0  
xw 

TgW - C + mg sin $w = -mV sin (1 - $ W ) ( 2 ~ E  + ,k) (5.9,6) 
TZw - L + mg cos 4, = mV cos (1 - $W)(2mE + ,k) 

The reduced moment equations for this case are of little interest, since they 
contain only second-degree terms in (p, q, r), and the latter are clearly of 
order (mE + fi), which is at  most about rad/sec for suborbital fight. 
They therefore reduce to L = M = N = 0. 

To be exact, even this restricted steady state cannot exist, for the following 
reasons : 

(i) All real vehicles in horizontal flight have propulsion systems that 
utilize fuel, so m is never strictly constant. 

(ii) The Earth is not a perfect sphere, so that flight at constant altitude 
(i.e. air density) is not strictly flight on a circle. 

(iii) The atmospheric density is never exactly constant and the wind never 
exactly zero at a given height. 
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These deviations from the idealized steady state are, of course, not im- 
portant enough to invalidate its usefulness. 

If the Earth rotation oE can be neglected, then clearly no one minor circle 
is preferable to  any other, and the steady state can be on any minor circle 
over the Earth. In  the flat-Earth approximation, the minor circle becomes 
any circle parallel to the ground surface. If in addition the variation of p 
with height can be neglected, as for a shallow climb or glide, the most general 
steady state becomes a vertical helix, i.e. a climbing or gliding turn. 

5.10 THE SMALL-DISTURBANCE THEORY 

A particular form of the system equations that has been used with enor- 
mous success ever since the beginnings of this subject is the linearized model 
for small disturbances about a reference condition of steady rectilinear flight 
over a flat Earth. This theory yields much valuable information and many 
important insights with relatively little effort. It gives correct enough 
results for engineering purposes over a surprisingly wide range of appli- 
cations, including stability and control response. There are, of course, 
limitations. It is not suitable for spinning, post-stall gyrations, nor any other 
application in which large variations occur in the state variables. 

The reasons for the relative success of this approach are twofold: (i) in 
many cases the major aerodynamic effects are truly nearly linear functions 
of the state variables, and (ii) disturbed flight of considerable violence can 
correspond to relatively small values of the linear- and angular-velocity 
disturbances. 

CHOICE OF AXES 

A convenient choice for the axes in the small-disturbance model is to use 
wind axes for the lift-force and drag-force equations (5.8,la and c), and 
body axes for the remaining force and moment equations (5.8,23 and 5.8,3). 
For vehicles having a plane of symmetry two sets of uncoupled equations 
are found, the Eo~zgitudinal and the lateral. Since the pitching moment 
equation turns out to be the same in both axis systems, the longitudinal 
equations are then in wind axes, and the lateral in body axes. 

NOTATION FOR SMALL DISTURBANCES 

The reference steady state is taken to be symmetric rectilinear flight, 
although the more general case can readily be handled by the same approach 
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(ref. 5.3). The steady-state values are denoted by subscript e (for equilibrium) 
and changes from them by the prefix A. Thus for example 

etc. 

Since the steady state selected is wings-level translation, we can have at 
most the following nonzero reference values of the state variables: 

ve, axe7 Ow.7 Yw, 

All other motion and angle variables are zero in the reference state and for 
these the prefix A is not needed. Owe as well will be zero if the reference 
state is horizontal flight, as i t  must be when we include the varia,tion of air 
density with height. However, we keep Owe as nonzero in order to  include 
the case of constant density within the analysis. Ow, the angle of climb, is 
replaced with the more common symbol y. 

FURTHER ASSUMPTIONS 

I n  the classical linear equations, m and g are constants, the vehicle is 
assumed to have a plane of symmetry, and the momenta of spinning rotors 
is excluded. The latter assumption is easily relaxed when rotor terms are 
important. As a particular choice for body axes we select P s ,  the stability 
axes, for which axe = we = 0 (see Sec. 4.2.7). Since the initial heading has 
no special significance in the flat-Earth approximation, we also set yws = 0. 

Instead of a*, the angle of attack of the xs axis, we choose for the angle of 
attack variable that of the zero lift line (see Sec. 6.1) .  It is denoted simply 
a, and of course is not zero in the reference state. a and a, differ only by a 
constant in any particular case. 

In treating the thrust terms of (5.8,l) we wish to make allowance for 
rather general conditions, such as can occur in VTOL and STOL flight, 
when the thrust vector may be at large angles to the direction of motion. 
We therefore assume conditions as illustrated in Fig. 5.8. We further assume 
that the thrust vector rotates rigidly with the vehicle when it  is perturbed. 
This implies that any rotation of the thrust relative to the vehicle is to be 
accounted for by adding suitable increments to L, D, and Y. 
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Fro. 5.8 Thrust vector at large angle to V. 

In  the perturbed state, the thrust vector in body axes is 

COS UT 

and in the wind axes is 

T w  = LWBTB 

On making use of (4.5,5) (with a, = h u  therein) and linearizing, the result 
is 

TXw = (T, + AT) cos a, - AaT, sin aT (a) 

TUw = -@T, cos a, ( b )  (5.10,3) 

TSw = -(To + AT) sin aT - AuT, cos a, (c )  

THE LINEAR EQUATIONS 

In  linearizing the appropriate members of (5.8,1) to (5.8,7), we assume 
that all the perturbation quantities AV, Aa, p, etc., are small, and that 
squares and products of them may be neglected. It follows that cos Ay = 1, 
and sin Ay + Ay. Thus (5.8,la) for example becomes 

(T, + AT) cos a, - AaT, sin - (D, + AD) - mg sin ( y e  + Ay) = m r  

or, on expanding the trigonometric term, 

(T, cos a, - D, - mg sin ye) + AT cos u, 

- AaT,sin uT - AD - mgcosy,Ay = m v  
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The part in brackets vanishes, since the reference state must satisfy the 
equations, and hence the fhal perturbation equation is 

AT cos a, - ANT, sin uT - AD - mg cosy, Ay = m v  (5.10,4) 

Note that no approximation has been made here concerning y,. The equation 
applies to flight at any angle of climb or descent up to vertical flight. Pro- 
ceeding in a similar manner for all the other equations, the result is 

AT oos a, - AaT, sin a, - AD - mg cosy, Ay = mV (a )  
A Y + mg cos ye# = m(d + Ver) (b)  

(5.10,5) 

AT sin aT + AuT, cos aT + AL + mg sin y, Ay = mV,qw (4  
A = I - I (a )  

A M = I '  rq (b)  (5.10,6) 

A = I - I ( c )  
& = ~ + r t a n y ,  (a)? 

3 = aw (b )  ( 5 . 1 0 , ~ )  
y = r sec y, (c)? 

p w = q - d  (5.10,8) 

2, = V, cos ye + cos y, AV - V, sin y, Ay (a )  
y,= Vecosy , -y+v  (b)  (5.1079)f 

6, = - Ve sin y, - sin ye AV - V, cosy, Ay (c)  

Note that the order of the terms in (5.10,8) has been rearranged slightly 
as compared with (5.8,5) and that two of the latter are not needed. Of 
(5.10,9) the first and third come from (5.8,6), and the second from (5.8,7). 

Although the moment equations (5.10,6) were obtained by a linearization 
of (5.8,3), which are the equations for a rigid body, they are in fact valid 
for a deformable body. This is because the first term on the r.h.s. of (5.6,8) 
contains only the products of first-order rotations and rates of change of 
inertia coefficients. The latter are also &st order in the linear model, and 
hence the distortional coupling terms are second order and negligible. 

Because of the simplicity of the linear kinematical relations, it is convenient 
to  eliminate qw and to regroup the equations as follows. 

t Equations (5.10,7a and c) cannot be regarded as a small-perturbation equation 
when y, - f 90' for then 4 and y - co for any finite r.  

$ Equations (5.10,9) are not strictly perturbation equations, albeit linear, because of 
the presence of the constant terms Vecos ye and -Ve sin y,. The perturbations are 
strictly (kE - Ve cos ye), b, and (iE + Ve sin y,). 

Next Page



Longitudinal aerodynamic 
characteristics-part I 

C H A P T E R  6 

In  the preceding chapters we have presented the general analytical 
foundations for solving problems concerning the motion of flight vehicles in 
the atmosphere. As was emphasized, however, the details of the problems 
and the character of the results obtained are dominated by the aerodynamic 
characteristics of the vehicle. It is essential therefore to explore the aero- 
dynamic aspect of the subject in some depth before proceeding to particular 
studies of vehicle dynamics. To this end, this and the following two chapters 
are devoted to a discussion of the main aerodynamic features of flight 
vehicles that are of concern for vehicle motion. Included is a body of material, 
traditionally referred to as "static stability and control" that relates to the 
control displacements and forces required to  maintain steady rectilinear 
flight, or to maintain a steady "pull-up." These are important items, both 
in relation to  handling qualities and to their use as stability criteria. Clearly 
the spectrum of vehicle types and operating conditions of interest is extremely 
broad-from air-cushion vehicles and helicopters on the one hand to hyper- 
sonic aircraft and entry vehicles on the other. It is obviously not practical 
to  present a comprehensive coverage of the aerodynamics of all these types 
within the scope of this text. The items selected for treatment are those 
considered to be particularly instructive and of rather broad application. 
With this basis i t  is hoped that the reader should be able to extrapolate the 
methods and approaches presented to  other situations with which he may be 
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concerned. One topic completely excluded, because it  requires an extensive 
treatment to be meaningful a t  all, is the aerodynamic characteristics of 
rotorcraft. References 6.1 to 6.4 give considerable information on this and 
other relevant topics in aerodynamics. 

6.1 THE BASIC LONGITUDINAL FORCES 

The basic a g h t  condition for most vehicles is symmetric steady flight. In  
this condition the velocity and force vectors are as illustrated in Fig. 6.1. 

+ 
W 

BIG. 6.1 Steady symmetric flight. 

The steady-state condition was fully described in Sec. 5.9. All the nonzero 
forces and motion variables are members of the set defined as "longitudinal" 
in Chapter 5, and hence we see the central importance of longitudinal 
aerodynamics. The two main aerodynamic parameters of this condition are 
V and a. 

Nothing can be said in general about the way the thrust vector varies with 
V and a, since it  is so dependent on the type of propulsion unit-rockets, jet, 
propeller, or prop-jet. Two particular idealizations are of interest, however, 

(i) T independent of V, i.e. constant thrust; an approximation for rockets 
and pure jets. 

(ii) T V  independent of V, i.e. constant power; an approximation for 
reciprocating engines with constant-speed propellers. 

The variation of steady-state lift and drag with a for subsonic and supersonic 
Mach numbers ( M  < about 5) are characteristically as shown in Fig. 6.2 
for the range of attached flow over the surfaces of the vehicle (refs. 6.5, 6.6). 
Over a useful range of u (below the stall) the coefficients are given accurately 
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FIG. 6.2 Lift and drag for subsonic and supersonic speeds. 

enough by 

The three constants CLa, CDrni,, K are principally functions of the con- 
figuration shape, thrust coefficient, and Mach number. 

Significant departure from the above idealizations may, of course, be 
anticipated in some cases. The minimum of CD may occur at a value of 
a > 0, and the curvature of the CL VS. u relation may be an important 
consideration for flight a t  high CL. When the vehicle is a "slender body," 
e.g. a slender delta, or a slim wingless body, the CL curve may have a 
characteristic upward curvature even at small a (ref. 6.7). The upward 
curvature of CL a t  small a is inherently present at hypersonic Mach numbers 
(ref. 6.8). For the nonlinear cases, a suitable formulation for CL is (ref. 6.9) 

cL = (+CATa sin 2a + CLlraa sin a Isin a1 ) cos a (6.13) 

where CIya and CA,aa are coefficients (independent of a)  that depend on the 
Mach number and configuration. [Actually CN here is the coefficient of the 
aerodynamic force component normal to the wing chord, and CNa is the value 
of CLa a t  a = 0, as can easily be seen by linearizing (6.1,3) with respect to a.] 
Equation (6.1,2) for the drag coefficient can serve quite well for flight 
dynamics applications up to hypersonic speeds ( M  > 5) at which theory 
indicates that the exponent of CL decreases from 2 to $. Miele (ref. 6.10) 
presents in Chapter 6 a very useful and instructive set of typical lift and 
drag data for a wide range of vehicle types, from subsonic to hypersonic. 
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6.2 PITCH STIFFNESS AND POSSIBLE CONFIGURATIONS 
FOR FLIGHT 

In Fig. 6.1 we have shown that the pitching moment M is zero, which is, 
of course, one of the conditions for equilibrium. It is intuitively evident, 
without recourse to  any formal stability theory, that there might be some- 
thing wrong with a flight vehicle that a t  constant speed and with fixed 
controls, experienced a positive (nose-up) pitching moment 4Cm following 
an increase 4 u  in the angle of attack from its equilibrium value. This is 
illustrated in curve a of Fig. 6.3 (i.e. C,, > 0). For then the moment 40, 

Equilibrium 
point (trim) b:Cma< 0 

FIG. 6.3 Pitch stiffness. 

would be such as to  increase further the perturbation in a. On the other hand, 
if the C, vs a relation is as in curve b, (Cma < 0 )  the moment following the 
disturbance is negative, and tends to restore u to its equilibrium value. The 
latter case is exactly parallel to that of a mass on a spring, which when 
disturbed from equilibrium, experiences a restoring force. The vehicle 
possesses as it  were an "aerodynamic torsion spring" thaL tries to hold u 
constant at its equilibrium value. This property has traditionally been called 
"static stability" in pitch. In  view of the more formal, more precise meaning 
now usually attached to the word stability (see Chapter 3), a more appropriate 
designation is positive pitch stiffness. The complete stability theory of the 
longitudinal motion (see Chapter 9) shows that positive pitch stiffness 
(C,, < 0 )  is in general neither necessary nor sufficient for stability. However, 
i t  is nevertheless a very important practical design criterion, the violation of 
which leads to consequences that can rarely be tolerated. The great importance 
of pitch stiffness makes calculation or measurement of C,(u) one of the 
central features of the aerodynamic design of all flight vehicles. This curve 
is typically monotonic in a over the usable flight range, as in Fig. 6.3, curve b .  
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We may conclude then, that a satisfactory flight configuration must not 
only have Cm = 0 a t  some a > 0 in order to t r i m  (i.e. be in pitch equilibrium) 
a t  positive lift, but a t  the same time must usually have Cmm < 0. Alternatively, 
as can be seen from Fig. 6.3, it must have Cmo > 0 and Cma < 0. It is 
somewhat simpler to use the latter form of the criterion to assess the 
possibilities for flight. 

We state here without proof (this is given in Sec. 6.3) that aCm/aa can be 
made negative for virtually any combination of lifting surfaces and bodies 
by placing the center of gravity far enough forward. Thus it is not the 
stiffness requirement, taken by itself, that restricts the possible configurations, 
but rather that it must coexist with zero moment. Since a proper choice of 
the C.G. location can ensure a negative aCm/ac(, then any conjgurat ion w i th  
a positive Cmo can satisfy the conditions for j l ight at L > 0. 

Figure 6.4 shows the Cmo of conventional airfoil sections. If an airplane were 

Positive camber Zero camber Negative camber 
C,, negative Cmo = 0 Cmo positive 

FIG. 6.4 C,, of airfoil sections. 

to consist of a straight wing alone (flying wing), then the wing camber would 
determine the airplane characteristics as follows : 

Negative camber-flight possible a t  a > 0;  i.e. CL > 0. 

Zero camber-flight possible only a t  a = 0, or CL = 0. 

Positive camber-flight not possible a t  any positive a or CL. 

For straight-winged tailless airplanes, only the negative camber satisfies the 
conditions for flight. Effectively the same result is attained if a flap, deflected 
upward, is incorporated a t  the trailing edge of a symmetrical airfoil. A 
conventional low-speed airplane, with essentially straight wings and positive 
camber, could fly upside down without a tail, provided the C.G. were far 
enough forward. The positively cambered straight wing can be used only in 
conjunction with an auxiliary device which provides the positive Cmo. The 
solution adopted by experimenters as far back as Samuel Henson (1842) and 
John Stringfellow (1848) was to  add a tail behind the wing. The Wright 
brothers (1903) used a tail ahead of the wing (Canard configuration). Either 
of these alternatives can supply a positive Cmo as illustrated in Fig. 6.5. 
When the wing is a t  zero lift, the auxiliary surface must provide a nose-up 
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Tail with 
CL negative 

Tail with + Cambered wing at 
CL positive CL= 0 

(b) 

FIG. 6.5 Wing-tail arrangements with positive C,,. ( a )  Conventional arrangement. 
( b )  Tail-first or Canard arrangement. 

moment. The conventional tail must therefore be at a negative angle of 
attack, and the Canard tail at  a positive angle. 

An alternative to the wing-tail combination is the swept-back wing with 
twisted tips (Pig. 6.6). When the net lift is zero, the forward part of the wing 
has positive lift, and the rear part negative. The result is a positive couple, 
as desired. 

+ Lift 
4 

- Lift 

FIG. 6.6 Swept-back wing with twisted tips. 
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A variant of the swept-back wing is the delta wing. The positive Cmo can be 
achieved with such planforms by twisting the tips, by employing negative 
camber, or by incorporating an upturned tailing edge flap. 

6.3 PITCH STIFFNESS OF A GENERAL CONFIGURATION 

Having established above the central importance of the derivative C,. for 
satisfactory flight, we turn now to a detailed discussion of it for a general 
vehicle configuration. We consider the vehicle to be composed of a body, a 
wing, a tail and propulsive units. If any of these are absent (as for a tailless 
airplane, a wingless missile, or a glider) the appropriate deletions from the 
analysis are readily made. 

The pressure distribution over the surfaces of a vehicle in steady rectilinear 
motion, and the consequent integrated forces and moments, are functions of 
angle of attack a, control surface angles, Mach number M, Reynolds number 
Re, thrust coefficient C T ,  and dynamic pressure ipV2. The last-mentioned 
parameter enters because of aeroelastic effects. If the vehicle is flexible, then 
a change in dynamic pressure, with all other variables constant, produces a 
change in shape, and hence of the forces and moments. 

In the following discussion the only restriction in relation to the above 
parameters is that of steady rectilinear flight. Specifically, power effects, 
flexibility, and compressibility effects are not excluded. 

PITCHING MOMENT OF A WING 

The force system acting on an isolated wing, in symmetric flight, can be 
represented as a lift L, and drag D, acting at a reference point, the mean 
aerodynamic center, together with a pitching moment (Fig. 6.7). 

Mean aerodynamic center 

FIG. 6.7 Aerodynamic forces on the wing. 
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Mean 
aerodynamic 

. . 
chord \ 

FIG. 6.8 Moment about the C.G. in the plane of symmetry. 

The inviscid theory of thin wings at small a,  predicts that the moment 
about the aerodynamic center is invariant with a,, and this is indeed 
very often the case in reality. However, it is possible that may 
vary with a,, and this case is included in the following. The moment of the 
force system of Fig. 6.7 about the vehicle center of gravity (see Fig. 6.8) is 
given by 

M ,  = Ma,,,, + (L, cos cc, + D, sin a,)(h - h , ) ~  

+ (L, sin a, - D, cos a,)zC (6.3, l)  

For many flight situations, including the cruising flight of all classes of 
fixed-wing aircraft, the angle of attack is small enough to justify the 
approximations sin a,  + a,, cos a ,  = 1 .  We take this to be the case here, 
bearing in mind the consequent restriction on the validity of the resulting 
equations. 

Equation (6.3, l)  is made nondimensional by dividing through by +pV2SE. 
It then becomes 

Although it may occasional$ be necessary to retain all the terms in (6.3,2), 
experience has shown that the last one is frequently negligible, and that 
CDwa, may often be neglected in comparison with CLw. With these simpli- 
fications, we obtain 

Equation (6.3,3) will be used to represent the wing pitching moment in the 
discussions that follow. 
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PITCHING MOMENT OF A BODY AND NACELLES 

The influence of the body and nacelles are complex. A body alone in an 
airstream is subjected to aerodynamic forces. These, like those on the wing, 
may be represented over moderate ranges of angle of attack by lift and drag 
forces at an aerodynamic center, and a pitching couple. When the wing and 
body are put together, however, a simple superposition of the aerodynamic 
forces which act upon them separately does not give a correct result. Strong 
interference effects are usually present, the flow field of the wing affecting 
the forces on the body, and vice versa. 

These interference flow fields are illustrated for subsonic flow in Fig. 6.9. 
Part (a)  shows the pattern of induced velocity along the body that is 
caused by the wing vortex system. This induced flow produces a positive 
moment that increases with wing lift or a. Hence a positive (destabilizing) 
contribution to C,= results. Part ( 6 )  shows an effect of the body on the wing. 
When the body axis is at  angle a to the stream, there is a cross-flow com- 
ponent V sin a. The body distorts this flow locally, leading to cross-flow 

FIG. 6.9 Example of mutual interference flow fields of wing and body-subsonic flow. 
(a )  Qualitative pattern of upwash and downwash induced along the body axis by the 
wing vorticity. (b) Qualitative pattern of upwash induced along wing by the cross-flow 
past the body. 
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components that can be of order 2V sin cc at the body-wing intersection. 
There is a resulting change in the wing lift distribution. 

The result of adding a body and nacelles to a wing may usually be inter- 
preted as a shift (forward) of the mean aerodynamic center, an increase in 
the lift-curve slope, and a negative increment in Cma.o.. The equation that 
corresponds to (6.3,3) for a wing-body-nacelle combination is then of the same 
form, but with different values of the parameters. The subscript wb is used 
to  denote these values. 

PITCHING MOMENT OF A TAIL 

The forces on an isolated tail are represented just like those on an isolated 
wing. When the tail is mounted on an airplane, however, important inter- 
ferences occur. The most significant of these, and one that is usually pre- 
dictable by aerodynamic theory, is a downward deflection of the flow at the 
tail caused by the wing. This is characterized by the mean downwash angle 
E .  Blanking of part of the tail by the body is a second effect, and a reduction 
of the relative wind when the tail lies in the wing wake is the third. 

Tail mean 

aerodynamic 
chord 

FIG. 6.10 Forces acting on the tail. 

Figure 6.10 depicts the forces acting on the tail. V is the relative wind 
vector of the airplane, and V' is the average or effective relative wind at the 
tail. The tail lift and drag forces'are by definition respectively perpendicular 
and parallel to  8'. The reader should note the tail angle i,, which in keeping 
with Fig. 6.5 must be negative. The moment Ma,+ is the pitching moment 
of the tail about its own aerodynamic center. This is zero for a symmetrical 
tail section, and in any case would come mainly from the deflection of the 
elevator. 

The contribution of the tail to the airplane lift, which by definition is 
perpendicular to V, is 

L, cos E - Dt sin E 
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E is usually a small angle, and D,E may be neglected compared with L,.  The 
contribution of the tail to the airplane lift then becomes simply L,. We 
introduce the symbol CLt to represent the lift coefficient of the tail, based on 
the airplane dynamic pressure $pV2 and the tail area St .  

The reader should note that the lift coefficient of the tail is often based on 
the local dynamic pressure a t  the tail, which differs from $pV2 when the 
tail lies in the wing wake. This practice entails carrying the ratio V'/V in 
many subsequent equations. The definition employed here amounts to 
incorporating V'/V into the tail lift-curve slope a, = aCLt/au,. This quantity 
is in any event different from that for the isolated tail, owing to the interference 
effects previously noted. This circumstance is handled in various ways in 
the literature. Sometimes a tail efficiency factor 7 ,  is introduced, the isolated 
tail lift slope being multiplied by 7 , .  In  other treatments, 7 ,  is used to 
represent (V'/V)2. In  the convention adopted here, a,  is the lift-curve slope 
of the tail, as measured in situ on the airplane, and based on the dynamic 
pressure $pV2. This is the quantity that is directly obt,ained in a wind-tunnel 
test. 

From Fig. 6.10 we find the pitching moment of the tail about the C.G. to be 

Nt = -lt[Lt cos (a,, - E )  + D, sin (awb - E ) ]  

- z ,[D,  cos (uwb - E )  - L ,  sin (u,, - E ) ]  + Ma,: (6.3,6) 

Experience has shown that in the majority of instances the dominant term 
in this equation is the first one, and that all others are negligible by com- 
parison. Only this case will be dealt with here. The reader is left to extend 
the analysis to situations where this approximation is not valid. With the 
above approximation, and that of small angles, 

Mt = -1,L, = -I,CLt+pV2St 

Upon conversion to coefficient form, we obtain 

The combination l,St/Sd is the ratio of two volumes characteristic of the 
airplane's geometry. It is commonly called the "horizontal-tail volume 
ratio," or more simply, the "tail volume." It is denoted here by V H .  Thus 

C mt = - V  C H ~t ( 6 . 38 )  
Since the center of gravity is not a fixed point, but varies with the loading 

condition and fuel consumption of the vehicle, V H  in (6.3,s)  is not a constant 
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Wing-body 
aerodynamic 

FIG. 6.11 Wing-body end tail aerodynamic centers. 

(although it does not vary much). It is a little more convenient to calculate 
the moment of the tail about a fixed point, the mean aerodynamic center 
of the wing-body combination, and to use this moment in the subsequent 
algebraic manipulations. Figure 6.11 shows the relevant relationships, and 
we define 

which leads to 

The moment of the tail about the wing-body aerodynamic center is then 
[cf. (6.3,8)] 

0 "'t = - - P C  H Lt (6.3,ll) 

and its moment about the C.G, is, from substitution of (6.3,10) into (6.3,8) 

PITCHING MOMENT OF A PROPULSIVE SYSTEM 

The moment provided by a propulsive system is in two parts: (1) that 
coming from the forces acting on the unit itself, e.g. the thrust and in-plane 
force acting on a propeller, and (2) that coming from the interaction of the 
propulsive slipstream with the other parts of the airplane. These are dis- 
cussed in more detail in Sec. 7.3. We assume that the interference part is 
included in the moments already given for the wing, body, and tail, and 
denote by Cm9 the remaining moment from the propulsion units. 
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TOTAL PITCHING MOMENT 

On summing (6.3,4) and (6.3,12) and adding the contribution C% for the 
propulsive system, we obtain the total pitching moment about the C.G., 

Since CLt is a coefficient based on St, then CLtS,/S is the tail contribution to 
CL, and the total lift coefficient of the vehicle IS 

Equation (6.3,13! therefore becomes 

It is worthwhile repeating that no assumptions about thrust, compressibility, 
or aeroelastic effects have been made in respect of (6.3,15). The pitch. stiffness 
(-Cma) is now obtained from (6.3,15). Recall that the aerodynamic centers 
of the wing-body combination and of the tail are fixed points, so that 

I f  a true aerodynamic center in the classical sense exists, then aC ma.c.walau 
is zero and 

6,. as given by (6.3,16) or (6.3,17) is a constant that depends linearly on the 
C.G. position, h. Since CLa is usually large, the magnitude and sign of Cma 
depend strongly on h. This is the,basis of the statement in Sec. 6.2 that Cma 
can always be made negative by a suitable choice of h. The C.G. position h, 
for which Cma is zero is of particular significance, since this represents a 
boundary between positive and negative pitch stiffness. I n  this book we 
define h, as the neutral point, N.P. It has the same significance for the 
vehicle as a whole as does the aerodynamic center for a wing alone, and indeed 
the term vehicle aerodynamic center is an acceptable alternative to "neutral 
point ." 
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The location of the N.P. is readily calculated from (6.3,16), i.e. 

aC,a. c .  zab - ac, ac, 0 = - + C  h , - h n w b ) - V H - - 4 + L  
aa La( aa aa 

Substitution of (6.3,18) back into (6.3,16) simplifies the latter to 

which is valid whether C,a.,.wb and C,, vary with a or not. Equation (6.3,19) 
clearly provides an excellent way of finding h, from test results, i.e. from 
measurements of Cma and CLa. The difference between the C.G. position and 
the N.P. is sometimes called the static margin, 

K ,  = (h, - h) (6.3,20) 

Since the criterion to be satisfied is Cma < 0 ,  i.e. positive pitch stiffness, 
then we see that we must have h < h,, or K ,  > 0 .  I n  other words the C.G. 
must be forward of the N.P. The farther forward the C.G. the greater is K,, 
and in the sense of "static stability" the more stable the vehicle. 

It must be emphasized that Cma and CLa are partial derivatives. This 
means that all other significant arguments, normally M, CT,  and $pV2 are 
kept constant. This is especially important to keep in mind when experi- 
mental results are being used. If these parameters are unimportant or absent, 
as in the gliding flight of a rigid vehicle a t  low M, then C ,  and CL are functions 
of a only, C ,  is a unique function of CL, and (6.3,19) yields 

Equation (6.3,21) is sometimes used in practice as a definition of the neutral 
point, but as is clear from the foregoing, i t  contains some dangers. Since C ,  
and CL are in the general case each functions of several independent 
variables, then the derivative dC,,/dCL is not mathematically defined, and 
indeed different values for it can be calculated depending on what con- 
straints are imposed on the independent variables. With particular con- 
straints it indeed turns out to be a useful index of stability, and this point 
is treated further in Sec. 9.3. 

LINEAR LIFT A N D  MOMENT 

When the forces and moments on the wing, body, tail, and propulsive 
system are linear in a ,  as may be near enough the case in reality, some 
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additional useful relations can be obtained. We then have 

and 

Furthermore, if Cmwb is linear in CAW(, i t  follows from (6.3,4) that Cma.c-w(r 
does not vary with CLwG, i.e. that a true aerodynamic center exists. Figure 
6.10 shows that the tail angle of attack is 

and hence 

The downwash E can usually be adequately approximated by 

The downwash E, at CL,, = 0 results from the induced velocity field of the 
body and from wing twist; the latter produces a vortex wake and downwash 
field even at zero total lift. The constant derivative a c / a o ~  occurs because the 
main contribution to the downwash at the tail comes from the wing trailing 
vortex wake, the strength of which is, in the linear case, proportional to CL. 

The tail lift coefficient then is 

and the total lift, from (6.3,14) is 

at St st 
= awbawb[l + =(1 - E)] + at Q (4 - €,) (a )  

Or CL = (CL)O + axwb ( b )  (6.3,29) 

or CL = aa (c) 

where st 
(CL)O = at - (it - €0) (6.3,30) s 

is the lift of the tail when a,, = 0 ;  

is the lift-curve slope of the whole configuration; and a is the angle of attack 
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Wff FIG. 6.12 Graph of total lift. 

of the zero-lift line of the whole configuration (see Fig. 6.12). Note that, since 
i, is negative, then (C,), is negative. The difference between a and a,, is 
found by equating (6.3,29b and c) to be 

When the linear relations for CL, CLt and em, are substituted into (6.3,15) 
the following results can be obtained after some algebraic reduction: 

where Gma = a(h - hnwJ - ( a )  

(6.3,34) 

or Cma = awb(h - hnwb) - a t  V H 1 - ) - + - au (b) 

and (7 = Cm 4- cmo + ~ ~ T H ( E O  - i t )  
mo B.C.wb 

a c m ,  
where Cmo9 = Cmo + ( a  - a,,) - 

u a% 
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cma 

FIG. 6.13 Effect of C.G. location on C,  curve. 

Note that since Cm0 is the pitching moment at zero a,,,, not at zero total lift, 
its value depends on h (via V H ) ,  whereas Cm0, being the moment at zero 
total lift, represents a couple and is hence independent of C.G. position. All 
the above relations apply to tailless aircraft by putting FH = 0. Another 
useful relation comes from integrating (6.3,19), i.e. 

C"n = c , ,  + CL(h - h,) 

C ,  = Cmo f au(h - h,) 

Figure 6.13 shows the linear C ,  vs. cc relation, and Pig. 6.14 shows the 
resultant system of lift and moment that corresponds to (6.3,37), i.e. a force 
CL and a couple Cm0 at the N . P .  

FIG. 6.14 Total lift and moment act- 
ing on vehicle. 

4.4 LONGITUDINAL CONTROL 

In  this section we discuss the longitudinal control of the vehicle from a 
static point of view. That is, we concern ourselves with how the equilibrium 
state of steady rectilinear flight is governed by the available controls. 
Basically there are two kinds of changes that can be made by the pilot or 
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automatic control system-a change of propulsive thrust, or a change of 
configuration. Included in the latter are the operation of aerodynamic 
controls--elevators, wing flaps, spoilers, and horizontal tail rotation. Since 
the equilibrium state is dominated by the requirement C, = 0, the most 
powerful controls are those that have the greatest effect on C,. 

Figure 6.13 shows that another theoretically possible way of changing the 
trim condition is to move the C.G., which changes the value of a a t  which 
C,  = 0. Moving it forward reduces the trim a or CL, and hence produces an 
increase in the trim speed. This method was actually used by Lilienthal, a 
pioneer of aviation, in gliding flights during 1891-1896, in which he shifted 
his body to move the C.G. It has the inherent disadvantage, apart from 
practical difficulties, of changing Cmm at the same time, reducing the pitch - 
stiffness and hence stability, when the trim speed is reduced. 

The longitudinal control now generally used is aerodynamic. A variable 
pitching moment is provided by moving the elevator, which may be all or 
part of the tail, or a trailing-edge flap in a tailless design. Deflection of the 
elevator through an angle 6, produces increments in both the 6, and CL of 
the airplane. The ACL caused by the elevator of aircraft with tails is small 
enough to be neglected for many purposes. This is not so for tailless aircraft, 
where the ACL due to elevators is usually significant. We shall assume that 
the lift and moment increments for both kinds of airplane are linear in a,, 
which is a fair representation of the characteristics of typical controls a t  
high Reynolds number. Therefore, 

and cm = C r n ( ~ )  + Cm,6, (4 

where CLg = aCL/a8,, C,, = aC,/as,, and CL(u) ,  Cm(a) are the "basic" 
lift and moment when 6, = 0. The.usual convention is to take down elevator 
as positive (Fig. 6.15a). This leads to positive CL, and negative C,,. The 
deflection of the elevator through a constant positive angle then shifts the 
C,-a curve downward, without change of slope (Fig. 6.15b). At the same time 
the zero-lift angle of the airplane is slightly changed (Fig. 6 .15~) .  

In the case of linear lift and moment, we have 
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Horizontal tail 

fi 

FIG. 6.15 Effect of elevator angle on Cm curve. (a) Elevator angle. ( b )  C ,  - a curve. 
( c )  CL - a curve. 

THE DERIVATIVES CL6 A N D  Cm6 

Equation (6.3,14) gives the vehicle lift, with St = 0 for tailless types, of 
course. Hence 

ac, ac,,", st ac,, c, =-=- +-- 
6 as, as, s as, 

in which only the first term applies for tailless aircraft and the second for 
conventional tail elevators or all moving tails (when i t  is used instead of 6,). 
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We define the elevator lift effectiveness as 

so that (6.4,3) becomes 

The total vehicle Cm is given for both tailed and tailless types by (6.3,15). 
For the latter, of course, F H  = 0. Taking the derivative w.r.t. 6, gives 

acm a . ~ . ~ ~  ~ C L ~  acm9 
Cm, = - + C L , ( ~  - hnmb) - VH - f - (6.4,6) 

ade as, as, 
We may usually neglect the last term, since there is unlikely to  be any 
propulsive-elevator interaction that cannot be included in a,. Then (6.4,6) 
becomes 

Summarizing for both types of vehicle, we have 
With tails : 

s c = a "  
4 e s  (a) (6.4,s)  

= -aeFH f C ~ d ( h  - hnwe) @ I  
Tailless : 

In  the last case, the subscript wb is, of course, redundant and has been 
dropped. The primary parameters to be predicted or measured are a, for 
tailed aircraft, and aC,/ad,, aC, /as, for tailless. 

8.C.  

ELEVATOR ANGLE TO TRIM 

The trim condition is C ,  = 0, whence from (6.4, ld)  
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and the corresponding lift coefficient is 

When the linear lift and moment relations (6.4,2) apply the equations for 
trim are 

These equations are solved for cc and 6, to give 

-- 'ma c ~ a  A (h  - h.1 dsetrim - - - - 
A 

( c )  
'C~trim 

where A = C C - GLdCma 
La ma (4 

and is normally negative. The values of A for the two types of airplane are 
readily calculated from (6.4,8 and 9 )  together with (6.3,19) to  give 

Tailed : 

A = C L ~ [ C L ~ ( ~ .  - hnw,) - a, FHI (a )  

Tailless : 

acma.c. A = C L  - as, 
and both are independent of h. Prom (6.4,13a) we get the trimmed lift curve: 

and the slope is given by 
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FIG. 6.16 Trimmed lift curve. 

The trimmed lift-curve slope is seen to be less than GLa by an amount that 

depends on Cma, i.e. on the static margin, and that vanishes when h = h,. 

The difference is only a few percent for tailed airplanes at normal C.G. 
position, but may be appreciable for tailless vehicles because of their larger 
CLa. The relation between the basic and trimmed lift curves is shown in 

Fig. 6-16. 
Equation (6.4,13b) is plotted on Fig. 6.17, showing how varies with 

'Ltrirn 
and C.G. position when the aerodynamic coefficients are constant. 

FIG. 6.17 Elevator angle to trim at  various C.G. positions. 
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VARIATION OF detrim WITH SPEED 

When, in the absence of compressibility, aeroelastic effects, and propulsive 
system effects, the aerodynamic coefficients of (6.4,13) are constant, the 
variation of 6,trim with speed is simple. Then detrim is a unique funotion of 

'Ltrirn 
for each C.G. position. Since CL , is in turn fixed by the equivalent 

trlm 
airspeed,? for horizontal flight 

then detrim becomes a unique funotion of VE.  The form of the curves is shown 
in Fig. 6.18 for representative values of the coefficients. 

The variation of with CLtrim or speed shown on Figs. 6.17 and 6.18 
is the normal and desirable one. For any C.G. position, an increase in trim 
speed from any initial value to a larger one requires a downward deflection 
of the elevator (a forward movement of the pilot's control). The "gradient" 
of the movement a6,trim/aVE is seen to decrease with rearward movement of 
the C.G. until i t  vanishes altogether a t  the N.P. In this condition the pilot 
in effect has no control over trim speed, and control of the vehicle becomes 
very difficult. For even more rearward positions of the C.G. the gradient 
reverses, and the controllability deteriorates still further. 

When the aerodynamic coefficients vary with speed, the above simple 
analysis must be extended. In  order to be still more general, we shall in the 

FIG. 6.18 Example of variation of elevator angle to trim with speed and C.G. position. 

t Equivalent airspeed (EAS) is V E  = vdP!p0 where po is standard sea-level 
density. 
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following explicitly include propulsive effects as well, by means of the 
parameter P, which stands for the state of the pilot's propulsion control 
(e.g. throttle position). P = constant therefore denotes fixed-throttle and, 
of course, for horizontal flight at  varying speed, P must be a function of V 
that is compatible with T = D. For angles of climb or descent in the normal 
range of conventional airplanes L = W is a reasonable approximation, and 
we adopt it in the following. When nonhorizontal flight is thus included, P 

becomes an independent variable, with the angle of climb y then becoming a 
function of P, V, and altitude. 

The two basic conditions then, for trimmed steady flight on a straight 
line are 

and in accordance with the postulates made above, we write 

Now let ( ), denote one state that satisfies (6.4,18) and consider a small 
change from it, denoted by differentials, to another such state. From (6.4,18) 
we get, for p = const, 

dCm = 0 (6.4,20) 

and CLV2 = const 

so that 
dV 

dCL = -2CLe- = -2CL0 dP (6.4,21) 
Ve 

where ? is defined in Table 5.1. Taking the differentials of (6.4,19) and 
equating to (6.4,20 and 21) we get 

CLa da + CLa dd, = -CLa d~ - ( C L ~  + ~CL,)  d 9  
(6.4,22) 

Cma dcr + Cm, dde = -cmn - Qmvd9 

where CL,, = aCL/a9 and Cmv = aCm/a?. From (6.4,22) we get the solution 
for dd, as 

There are two possibilities, P constant and .rr variable. In the first case 
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(fixed throttle), d r  = 0 and 

It will be shown in Chapter 9 that the vanishing of this quantity is a true 
criterion of stability, i.e. it must be >O for a stable airplane. In the second 
case, for example exactly horizontal flight, r = r ( V )  and the r term on the 
r.h.s. of (6.4,23) remains. For such cases the gradient (ddetri,/dP) is not 
necessarily related to stability. For purposes of calculating the propulsion 
contributions, the terms CLn d r  and Cmr d r  in (6.4,23) would be evaluated 
as dCLe and dCm9 [see the notation of (6.3,13)]. These contributions to the 
lift and moment are discussed in Sec. 7.3. 

FIG. 6.19 Reversal of dtri, slope at  transonic speeds, rr = const. 

The derivatives CAT and CmV (see Sec. 7.8) may be quite large owing to 
slipstream effects on STOL airplanes, or Mach number effects near transonic 
speeds. These variations with M can result in reversal of the slope of 
as illustrated on Fig. 6.19. The negative slope at A, according to the stability 
criterion referred to above, indicates that the airplane is unstable at A. 
This can be seen as follows. Let the airplane be in equilibrium flight at the 
point A, and be subsequently perturbed so that its speed increases to that of 
B with no change in a or 6,. Now at B the elevator angle is too positive for 
trim: i.e. there is an unbalanced nose-down moment on the airplane. This 
puts the airplane into a dive and increases its speed still further. The speed 
will continue to increase until point C is reached, when the 6, is again the 
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correct value for trim, but here the slope is positive and there is no tendency 
for the speed to change any further. 

STATIC STABILITY LIMIT, h, 

The critical C.G. position for zero elevator trim slope (i.e. for stability) 
can be found by setting (6.4,24) equal to zero. Recalling that Cma = 
CL,(h - hn), this yields 

where 

Depending on the sign of C,,,, h, may be greater or less than h,. In terms of 
h,, (6.4,24) can be rewritten as 

(h - h,) is the "stability margin," which may be greater or less than the 
static margin. 

FLIGHT DETERMINATION OF h, AND h, 

For the general case, (6.3,19) suggests that the measurement of hn requires 
the measurement of Cma and CL,. Plight measurements of aerodynamic 
derivatives such as these can be made by dynamic techniques. However, in 
the simpler case when the complications presented by propulsive, com- 
pressibility, or aeroelastic effects are absent, then the relations implicit in 
Figs. 6.17 and 6.18 lead to a means of finding h, from the elevator trim 
curves. In that case all the coefficients of (6.4,13) are constants, and 

Thus measurements of the slope of Setrim VS. CLtrim at various C.G. positions 
produce a curve like that of Fig. 6.20, in which the intercept on the h axis is 
the required N.P. 
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d M fixed 

FIG. 6.20 Determination of stick-fixed neutral point from flight test. 

When speed effects are present, it is clear from (6.4,27) that a plot of 
(ddetrim/dp), against h will determine h, as the point where the curve crosses 
the h axis. 

6.5 CONTROL HINGE MOMENT 

The aerodynamic forces on any control surface produce a moment about 
the hinge. Figure 6.21 shows a typical tail surface incorporating an elevator 
with a tab. The tab usually exerts a negligible effect on the lift of the 
aerodynamic surface to which it is attached, although its influence on the 
hinge moment is large. 

The coefficient of elevator hinge moment is defined by 

Here HE is the moment, about the elevator hinge line, of the aerodynamic 
forces on the elevator and tab, 8, is the area of that portion of the elevator 
and tab that lies aft of the elevator hinye line, and 5, is a mean chord of the 
same portion of the elevator and tab. Sometimes E, is taken to be the geo- 
metric mean value, i.e. 5, = SE/2s,, and other times it is the root-mean square 
of c,. The taper of elevators is usually slight, and the difference between the 
two values is generally small. The reader is cautioned to note which definition 
is employed when using reports on experimental measurements of C,,. 

Of all the aerodynamic parameters required in stability and control 
analysis, the hinge-moment coefficients are most difficult to determine with 
precision. A large number of geometrical parameters influence these co- 
efficients, and the range of design configurations is wide. Scale effects tend to 
be larger than for many other parameters, owing to the sensitivity of the 
hinge moment to the state of the boundary layer at the trailing edge. Two- 
dimensional airfoil theory shows that the hinge moment of simple flap controls 
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- se .- 
(a) 

Elevator hinge, 
Tab hinge 

F+*T- - ct --------+I 
(6) 

FIG. 6.21 Elevator and tab geometry. (a) Plan view. (b) Seceion A-A. 

is linear with angle of attack and control angle in both subsonic and super- 
sonic flow. 

The normal-force distributions typical of subsonic flow associated with 
changes in u and 6 are shown qualitatively in Fig. 6.22. The force acting on 
the movable flap has a moment about the hinge that is quite sensitive to its 
location. Ordinarily the hinge moments in both cases (a)  and ( b )  shown are 
negative. 

In  many practical cases it is a satisfactory engineering approximation to 
assume that for finite surfaces Ch, is a linear function of us, 6,, and 6,. The 
reader should note however that there are important exceptions in which 
strong nonlinearities are present. An example is the Frise aileron, shown 
with a typical Ch curve, in Fig. 6.23. 
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(b) 

FIG. 6.22 Normal-force distribution over control surface at subsonic speed. (a) Force 
distribution over control associated with cr at 6 = 0. (b )  Force distribution over control 
associated with 6 at zero a. 

We assume that Che is linear, as follows, 

where 

b  - a c h e  - , 
2 - as, he* 

a c h e  b , = - = C  
as, 

us is the angle of attack of the surface to which the control is attached (wing 
or tail), and S t  is the angle of deflection of the tab (positive down). The 
determination of the hinge moment then resolves itself into the determination 
of b,, b,, b,, and b3. The geometrical variables that enter are elevator chord 
ratio ce/ct, balance ratio ca/c,, nose shape, hinge location, gap, trailing-edge 
angle, and planform. When a set-back hinge is used, some of the pressure acts 
ahead of the hinge, and the hinge moment is less than that of a simple flap 
with a hinge a t  its leading edge. The force that the control system must 
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FIG. 6.23 Typical hinge moment of Frise aileron. Wing cr = 2". R.N. = 3.3 x lo6. 

exert to hold the elevator at the desired angle is in direct proportion to the 
hinge moment. 

We shall find i t  convenient subsequently to have an equation like (6.5,1) 
with a instead of a,. For tailless aircraft, a, is equal to a, but for aircraft 
with tails, a, = a,. Let us write for both types 

Che = Cheo f Che,a $ b 2 a e  f bsst (6.52) 

where for tailless aircraft Cheo = b,, Ghea = bl. For aircraft with tails, the 

relation between a and or, is derived from (6.3,25) and (6.3,32), i.e. 

whence it follows that for tailed aircraft, with symmetrical airfoil sections 
in the tail, for which b, = 0, 
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6.6 INFLUENCE OF A FREE ELEVATOR ON LIFT AND 
MOMENT 

In Sec. 6.3 we have dealt with the pitch stiffness of an airplane the controls 
of which are fixed in position. Even with a completely rigid structure, which 
never exists, a manually operated control cannot be regarded as fixed. A 
human pilot is incapable of supplying an ideal rigid constraint. When 
irreversible power controls are fitted, however, the stick-fixed condition is 
closely approximated. A characteristic of interest from the point of view of 
flying qualities is the stability of the airplane when the elevator is completely 
free to rotate about its hinge under the influence of the aerodynamic 
pressures that act upon it. Normally, the stability in the control-free 
condition is less than with fixed controls. It is desirable that this difference 

FIG. 6.24 Elevator floating angle. 

should be small. Since friction is always present in the control system, the 
free control is never realized in practice either. However, the two ideal 
conditions, free control and fixed control, represent the possible extremes. 

When the control is free, then Ch, = 0, so that from (6.5,2) 

The typical upward deflection of a free-elevator on a tail is shown in Fig. 6.24. 
The corresponding lift and moment are 

C L ~ ~ ~ ~  = C L = ~  + C L $ ~ ~ ~ ~ ~  

Cm tree = C ,  + CmQa + Cmsaefree 

After substituting( 6.6,l) into (6.6,2), we get 
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where 

When due consideration is given to the usual signs of the coefficients in these 
equations, we see that the two important gradients CLa and Cma are reduced 
in absolute magnitude when the control is released. This leads, broadly 
speaking, to a reduction of stability. 

FREE-ELEVATOR FACTOR 

When the elevator is part of the wing, as on a tailless aircraft, and the 
elevator is free, the lift-curve slope is given by (6.6,43), i.e. 

The factor in parentheses is the free elevator factor F, and normally has a 
value less than unity. Likewise, when the elevator is part of the tail, the 
floating angle can be related to cr,, viz. 

Che = blxt -k b2dfree + b 3 4  = 0 

and the tail lift coefficient is 

The effective lift-curve slope is 

where F = 1 - - - is the free-elevator factor for a tail. If Fat be used in ( 2 ;:) 
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place of a,  and a' in place of a, then ill the equations given in Sec. 6.3 hold 
for tailed aircraft with a free elevator. 

CONTROL-FREE NEUTRAL POINT 

It is evident from the preceding comment that the N.P. of a tailed aircraft 
when the control is free is given by (6.3,36) as 

Alternatively, we can derive the N.P. location from (6.6,5b), for we know 
from (6.3,19) that 

Since C,, is of different form for the two main types of aircraft, we proceed 
separately below. 

Tailless Aircraft. Cma is given by (6.4,9) and Chsa = bl. When these are 
substituted into (6.6,11) the result is 

- ( h - h n )  a - - C  b1 --- 61 acma.,. 
- 7 ( b2 ~ a )  afb2 ad. 

By virtue of (6.6,6) this becomes 

bl aQm,.e. h - h '  = h - h  --- 
" a1b2 ad, 

' 1  8Cma.c. h i =  h, + -- 
a'b, ad, 

Tailed Aircraft. C,, is given by (6.4,8), so (6 .6 , l l )  becomes for this case 



Longitudinal aerodynamic characteristics-part 1 229 

Using (6.6,4b) this becomes 

'he,  

a' finwb) + a e ~ ~  

We replace hnmb by (hnZOb - h,) + hn to get 

Finally, using (6.4,8) for CLa, and (6.5,4) for Chea, we get 

The difference (h; - h) is called the control-free static margin, KL. When 
representative numerical values are used in (6.6,13) one finds that hn - hk 
may be typically about 0.08. This represents a substantial forward movement 
of the N.P., with consequent reduction of static margin, pitch stiffness, and 
stability. 

6.7 THE USE OF TABS 

TRIM TABS 

In order to fly a t  a given speed, or CL, i t  has been shown in Sec. 6.4 that a 
certain elevator angle is required. When this differs from the free- 
floating angle a force is required to hold the elevator. When flying for 
long periods at a constant speed, it is very fatiguing for the pilot to  maintain 
such a force. The trim tabs are used to relieve the pilot of this load by 
causing detrim and asfree to  coincide. The trim-tab angb required is calculated 
below. 

When Ch, and C ,  are both zero, the tab angle is obtained from (6.5,2) as 

On substituting from (6.4,13), (which implies neglecting aC,/ast) we get 
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F I ~ .  6.25 Tab angle to trim. 

which is linear in CLtrim for constant h, as shown in Fig. 6.25. The dependence 
on h is simple, since from (6 .6 , l l )  we find that 

(cbaC,, - b2Cma) = -atb,(h - h$) 
and hence 

1 a'b, 
4,, = - - [G, + 2 (CheaQ~d - b d k a )  - - 9 - h.)cLtrim] (6 .73 )  

b3 A 
This result applies to both tailed and tailless aircraft, provided only that the 
appropriate values of the coefficients are used. It should be realized, of 
course, in reference to Fig. 6.25, that each different CLtrim in a real flight 
situation corresponds to a different set of values of M, &pV2, and CT, SO that 
in general the coefficients of (6.7,2) vary with CL, and the graphs will depart 
from straight lines. 

Equation (6.7,2) shows that the slope of the 6, vs CLtrim curve is pro- 
portional to the control-free static margin. When the coefficients are constants, 
we have 

The similarity between (6.7,3) and (6.4,13c) is noteworthy, i.e. the trim-tab 
slope bears the same relation to the control-free N.P. as the elevator angle 
slope does to the control-fixed N.P. It follows that flight determination of 
hk from measurements of dSttrim/dCLtri, is possible subject to the same 
restrictions as discussed in relation to the measurement of h, on p. 221. 

GEARED TABS 

The coefficient b, dominates the hinge moment of a control, and hence the 
control force. It gives the rate at which the hinge moment increases with 
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Fro. 6.26 Geometry of geared tab. 

control angle. The need for reduction of b, by aerodynamic means was 
referred to in Sec. 6.5. One such means, which is very effective, is the geared 
or servo tab. The geometry of such a tab is illustrated in Fig. 6.26. The angle 
of the tab relative to the control surface is determined by the rigid link AB. 
When arranged as shown, downward movement of the control is accompanied 
by an automatic upward movement of the tab. The hinge moment caused 
by the tab is then of the sense which assists the control movement. If B were 
moved to the upper surface of the tab, so that AB crossed HH, then the 
opposite effect would be obtained. This arrangement, known as an antiservo, 
or antibalance tab can be used when a control is otherwise overbalanced, or 
too closely balanced. It provides a means of achieving a zero or positive b, 
without any detrimental effect on b,, as follows. The balance, c, (Fig. 6.21), 
is chosen large enough so that b, becomes zero or positive. The control will 
then have b, either too small or even positive. This is then corrected by 
introducing an antiservo geared tab. 

Suppose that, when the elevator moves through an angle 6,, the tab 
displacement is -y6,. y ,  called the "tab gearing," is positive for a servo tab 
and negative for an antiservo tab. The hinge-moment coefficient will then be 

The servo tab thus in effect reduces the value of b, by the factor 

SPRING TABS 

The effect of the "speed-squared law" on control forces a t  high speeds has 
led to the development of the "spring tab." The effect of this device is to  
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Rudder hinge line 

Control rod f 

6.27 Spring tab applied to a rudder. 

mitigate the influence of speed. Figure 6.27 shows the principle. The system 
functions as follows. When a force is applied through the control rod to the 
control lever, the latter rotates through some angle 8. The control surface 
would rotate through the same angle, and the tab not move at all, if the 
control lever were rigidly connected to the surface. However, this is not so, 
and the torsion bar twists through some angle +. The surface displacement is 
then 6 = 8 - 4. The movement of the control lever relative to the surface 
(angle +), causes the tab link to move and deflect the tab, just as though it  
were a geared tab. Now with all other factors equal, an increase in speed will 
require an increase in the control-rod load to hold the same surface angle. 
But an increase in this force introduces extra twist into the torsion bar, and 
hence increases the tab deflection. Thus, as the speed increases, an increasing 
proportion of the hinge moment is balanced by the tab, and a decreasing 
proportion by the pilot or control system. In effect, the system behaves like 
a geared servo tab, the gearing of which increases with speed. 

SERVO TABS 

When the pilot's control force acts only to deflect the tab, and not the 
main surface, i t  is designated a servo tab. This result is attained if the torsion 
spring of Pig. 6.27 is replaced by a free hinge. The control lever then becomes 
an idler and the force in the control rod is simply tlie reaction to the tab 
hinge moment, which is of course relatively small. The angle through which 
the control surface deflects is then governed by the kinematics of the linkage, 
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and the equilibrium of aerodynamic and control rod moments about the 
main surface hinge. 

Both spring tabs and servo tabs are effective devices for reducing control 
forces on large high-speed airplanes. However, both add an additional 
degree of freedom to the control system dynamics, and this is a potential 
source of trouble due to vibration or flutter. 

6.8 CONTROL FORCE TO TRIM 

One of the important handling characteristics of an airplane is the force 
required of the pilot to hold the elevator a t  the angle required for trim, and 
the manner in which this force varies with speed. If friction in the control 
system be neglected, the stick force is simply related to the elevator hinge 
moment. The hinge moment itself, as can be deduced from the definition of 
C,, is roughly proportional to the square of the speed, and the cube of the 
airplane size. Large high-speed airplanes therefore have serious control 
problems, since the forces required may be too large for a human pilot to 
supply. Much development has gone into attempts to arrive a t  purely 
aerodynamic solutions to this difficulty. The devices employed include 
various forms of nose balance, and the use of geared and spring tabs. Closely 
balanced controls have experienced difficulties because of the sensitivity of 
the hinge moment to such factors as nose shape and gap, which are inevitably 
subject to variations in manufacture. 

Another approach is to relieve the pilot of some or all of the aerodynamic 
load through the use of power controls. These may be designed so that the 
pilot supplies a fixed proportion of the control force, the power system 
supplying the remainder. A system of this kind is illustrated in Fig. 11.4. 
With such "ratiov-type controls, the feel has the same character as when 
power is absent, i.e. the stick forces vary with speed, and in maneuvers, in 
the same way. Alternatively, the power controls may be irreversible, in 
that none of the aerodynamic load is carried directly to the pilot. Such 
systems are fitted with devices that produce a synthetic feel a t  the stick. 
The stick-force characteristics can then be made virtually whatever the 
designer wishes. Other classes of control system provide the pilot with power 
amplification rather than force amplification, i.e. the power system acts so 
as to increase the control deflection above that which would follow from the 
unpowered kinematics. This has the same net effect as the ratio-type control, 
however, since a greater mechanical advantage can then be supplied to the 
pilot than would be possible without the power boost. A detailed discussion 
of a variety of control concepts and mechanisms is given by Kolk (ref. 6.11), 
to which the student is recommended. 
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FIG. 6.28 Schematic diagram of an elevator control system. 

Figure 6.28 is a schematic representation of a reversible control system. 
The box denoted "control system linkage" represents any assemblage of 
levers, rods, pulleys, cables, and power-boost elements that comprise a 
general control system. We assume that the elements of the linkage and the 
structure to which it is attached are ideally rigid, so that no strain energy is 
stored in them. We also neglect friction, and assume that the movement of 
the control is slow enough that the automatic power elements have nearly 
zero error (e.g. the link AB in Fig. 11.4 does not rotate appreciably). The 
system then has one degree of freedom. P is the force applied by the pilot, 
(positive to the rear) s is the displacement of the hand grip, and the work 
done by the power boost system is W,.  Considering a small quasistatic 
displacement from equilibrium (i.e. no kinetic energy appears in the control 
system), conservation of energy gives 

Now the nature of ratio or power boost controls is such that dWb/ds  is 
proportional to P or H,. Hence we can write 

where 
dd 

G, = - -e > 0, the elevator gearing (radlft) 
ds 

and Wb'ds, the boost gearing (ft-l) G, = - 
He 
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In  the example of Fig. 11.4, BJ is zero in a steady state, and clearly the work 
done by the hydraulic system is dW, = const x J ds, where the constant 
derives from the various lever ratios; and J = const x He. Hence dW,/ds = 
const x He. The latter constant, easily found from the geometry, is G,. Finally, 
we write 

P = GHe (6.83) 

where G = GI - G,. For fixed GI,  i.e. for a given movement of the control 
surface to result from a given displacenzent of the pilot's control, then the 
introduction of power boost is seen to reduce G and hence P.  G may be 
designed to be constant over the whole range of a,, or it may, by the use of 
special linkages and power systems, be made variable in almost any desired 
manner. 

Introduction of the hinge-moment coefficient gives the expression for P as 

and the variation of P with flight speed depends on both V2 and on how Che 
varies with speed. 

The value of Ch, at trim for arbitrary tab angle is given by 

Prom (6.7,l) we see that 
ChG = b 3 ( 4  - 6ttrim) 

i.e. the hinge moment is zero when 6, = attrim as expected, and linearly 
proportional to the difference. From (6.7,2) then the hinge moment is 

Except a t  hypervelocities, the lift equals the weight in horizontal flight, so 
that 

where w = W/X, the "wing loading." When (6.8,7 and 8) are substituted 
into (6.8,4) the result obtained is 

P = A + B.&pV2 
where 

arb 
A = -GSeEew -2 (h - h',) 

A 
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FIG. 6.29 Example of low-speed control force. 

The typical parabolic variation of P with V when the aerodynamic 
coefficients are all constant, is shown in Fig. 6.29. The following conclusions 
may be drawn. 

1. Other things remaining equal, P cc S,Ee, i.e. to the cube of the airplane 
size. This indicates a very rapid increase in stick forces with size. 

2. P is directly proportional to the gearing G. 
3. The C.G. position only affects the constant term (apart from a second- 

order influence on (2%). A forward movement of the C.G. produces an 
upward translation of the curve. 

4. The weight of the airplane enters only through the wing loading, a 
quantity that tends to be constant for airplanes serving a given function, 
regardless of weight. An increase in wing loading has the same effect 
as a forward shift of the C.G. 

5.  The part of P that varies with ipV2 decreases with height, and increases 
as the speed squared. 

6. Of the terms contained in B, none can be said in general to  be negligible. 
All of them are "built-in" constants except for 6,. 

7. The effect of the trim tab is to change the coefficient of ip82, and hence 
the curvature of the parabola in Fig. 6.29. Thus it controls the intercept 
of the curve with the V axis. This intercept is denoted Vtri,; it is the 
speed for zero stick force. 
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6.9 CONTROL FORCE GRADIENT 

It was pointed out in Sec. 6.7 how the trim tabs can be used to reduce the 
stick force to zero. A significant handling characteristic is the gradient of P 
with V at P = 0. The manner in which this changes as the C.G. is moved aft 
is illustrated in Fig. 6.30. The trim tab is assumed to be set so as to keep Vtrim 
the same. The gradient dP/dV is seen to decrease in magnitude as the C.G. 

FIG. 6.30 Effect of C.G. location on control-force gradient at fixed trim speed. 

moves backward. When it  is at  the control-free neutral point, A = 0 for 
aircraft with or without tails, and, under the stated conditions, the P-V 
graph becomes a straight line lying on the V axis. This is an important 
characteristic of the control-free N.P.; i.e. when the C.G. is at  that point, no 
force is required to change the trim speed. 

A quantitative analysis of the control-force gradient follows. 
The force is given by (6.8,9). Prom it  we obtain the derivative 

At the speed Vtrim, P = 0, and B = -A/+pV2trim, whence 

A is given following (6.8,9). Substituting the value into (6.9,1) we get 

a p  a'b w - = 2GS,C, -2 - (h  - h',) 
av A vkrim 
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From (6.9,2) we deduce the following: 

1. The control-force gradient is proportional to SeZe; i.e. to the cube of 
airplane size. 

2.  It is inversely proportional to the trim speed; i.e. i t  increases with 
decreasing speed. This effect is also evident in Fig. 6.29. 

3. It is directly proportional to wing loading. 
4. It is independent of height for a given true speed, but decreases with 

height for a fixed VE.  
5. It is directly proportional to the control-free static margin. 

Thus, in the absence of compressibility, the elevator control will be "heaviest" 
a t  sea-level, low-speed, forward C.G. and maximum weight. 

6.10 MANEUVERABILITY-ELEVATOR ANGLE AND 
CONTROL FORCE PER g 

In  this section we investigate the elevator angle and control force required 
to  hold a vehicle in a steady pull-up with load factor? n (Fig. 6.31). The 
concepts discussed here were introduced by S. B. Gates, ref. 6.12. The flight- 
path tangent is horizontal a t  the point under analysis, and hence the net 
normal force is L - W = ( n  - l ) W  vertically upward. The normal 
acceleration is therefore (n  - 1)g. 

When the vehicle is in straight horizontal flight a t  the same speed and 
altitude, the elevator angle and control force to trim are 6, and P ,  respectively. 
When in the pull-up, these are changed to 6, + Ase and P + AP. The ratios 
Ad,/(n - 1) and AP/(n - 1) are known, respectively, as the elevator angle per 
g ,  and the control force per g. These two quantities provide a measure of the 
maneuverability of the vehicle; the smaller they are, the more maneuverable 
it is. 

The angular velocity of the airplane is fixed by the speed and normal 
acceleration (Fig. 6.31). 

(n - 1)s q=- ( 6 . l 0 , l )  
v 

As a consequence of this angular velocity, the field of the relative air flow 
past the airplane is curved. It is as though the machine were attached to the 
end of a whirling arm pivoted a t  0. This curvature of the flow field alters the 
pressure distribution and the aerodynamic forces from their values in trans- 
lational flight. The change is large enough that it must be taken into account 
in the equations describing the motion. 

t The load factor is the ratio of lift to weight, n = LIW. It is unity in straight 
horizontal flight. 
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+w 
FIG. 6.31 Airplane in a pull-up. 

We assume that q and the increments Aa, Ad, etc. between the rectilinear 
and curved flight conditions are small, so that the increments in lift and 
moment may be written 

where 4 = qE/2V, CLp = aC,/ad, G, = aCm/atj' (see Sec. 5.13). The q 
derivatives are discussed in Sec. 7.9. In  this form, these equations apply to 
any configuration. From (6.10,l) we get 



240 Dynamics of atmospheric jlight 

which is more conveniently expressed in terms of Cw and p (see Table 5.1), 
i.e. 

C w  d =  ( n -  1 ) -  
2~ 

Since the curved fight condition is also assumed to. be steady, i.e. without 
angular acceleration, then AC, = 0 .  Finally, we can relate ACL to n thus: 

Equations (6.10,2 and 3)  therefore become 

C w  0 = c,, Aor + ( n  - l)Cma - + C,, Aae 
2~ 

which are readily solved for Aor and Ad, to yield the elevator angle per g 

- - (0.10,6) 

and 
Act 1 

n - 1  
(a) 

where A is given by (6.4,13). As has been shown in Sec. 6.4 A does not depend 
on C.G. position, hence the variation of Ad,/(n - 1) with h is provided by the 
terms in the numerator. Writing Cmz = CLa(h - h,) (6.10,Ba) becomes 

The derivatives CLq and Cma both in general vary with h, the former linearly, 
the latter quadratically, (see Sec. 7.9).  Thus (6.10,7), although it appears to be 
linear in h, is not exactly so. For airplanes with tails, CLq can usually be 
neglected altogether when compared with 2p,  and the variation of Cma with 
h is slight. The equation is then very nearly linear with h, as illustrated in 
Fig. 6.32. For tailless airplanes, the variation may show more curvature. 
The point where Ad,/(n - 1 )  is zero is called the control-$xed malzeuver point, 
and is denoted by h,, as shown. From (6.10,7) we see that 
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FIG. 6.32 Elevator angle per g. 

0 

where Cma(h,) and CLJh,) are the values of these two derivatives evaluated 
for h = h,. When Cmq and CLg can be assumed to be independent of h, 
(6.10,7) reduces to 

maneuver point- 
point of zero 

6 per g. 

The difference (h, - h) is known as the control-$xed maneuver margin. 

CONTROL FORCE PER g 

Prom (6.8,4) we get the incremental control force 

AP = CSEfi,&pV2 AC,, (6.10,lO) 

Ch, is given for rectilinear flight by (6.5,2). Since it too will in general be 
influenced by q, we write for the incremental value (Ad, = 0 )  

Ache = Chea + Ch,B + b2 Ase (6.10,l l )  

The derivative Cha is discussed in Sec. 7.9. Using (6.10,4) and (6.10,6b), 
(6 .10 , l l )  is readily expanded to give 
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From (6.6,4) we note that the last parenthetical factor is b2Ci,ICLa or 
b2a1/a. For Ad, we use the approximation (6.10,9) in the interest of simplicity 
and the result for AC,, after some algebraic reduction is 

where 

In  keeping with earlier nomenclature, hk is the control-free maneuver point 
and (hk - h) is the corresponding margin. On noting that Cw&pV2 is the 
wing loading w, we find the control force per g is given by 

Note that this result applies to both tailed and tailless aircraft provided that 
the appropriate derivatives are used. The following conclusions may be 
drawn from (6.10,15). 

1. The control force per g increases linearly from zero as the C.G. is moved 
forward from the control-free maneuver point, and reverses sign for 
h > hh. 

+-. 
C.G. position 

Control-free neutral point- \ Control-free 
point of zero gradient of maneuver point- 

control force at point of zero control 
hands-off speed force per g 

Fra. 6.33 Control force per g. 
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2. It is directly proportional to the wing loading. High wing loading 
produces "heavier" controls. 

3.  For similar aircraft of different size but equal wing loading, Q K X,E,; 
i.e. to the cube of the linear size. 

4 .  Neither CL nor V enters the expression for Q explicitly. Thus, apart 
from M and Reynolds number effects, Q is independent of speed. 

5. The factor p which appears in (6.10,14) causes the separation of the 
control-free neutral and maneuver points to vary with altitude, size, 
and wing loading, in the same manner as the interval (h, - h,). 

Figure 6.33 shows a typical variation of Q with C.G. position. The state- 
ment made above that the control force per g is "reversed" when h > h& 
must be interpreted correctly. In the &st place this does not necessarily mean 
a reversal of control movement per g, for this is governed by the elevator 
angle per g. If hk < h < h,, then there would be reversal of Q without 
reversal of control movement. In the second place, the analysis given applies 
only to the steady state at  load factor n, and throws no light whatsoever on 
the transition between unaccelerated fight and the pull-up condition. No 
matter what the value of h, the initial control force and movement required 
to start the maneuver will be in the normal direction (backward for a pull- 
up), although one or both of them may have to be reversed before the final 
steady state is reached. 



Longitudina namic 
characteristics-part 2 

C H A P T E R  7 

7.1 BOB WEIGHTS AND SPRINGS 

The control-force characteristics of manual-control systems can be 
modified by the introduction of weights and springs, as illustrated sche- 
matically in Fig. 7.1. When a spring, or bungee, is used as in Fig. 7. lb ,  it is 

FIG. 7.1 

244 

Bob weight and spring. (a )  Bob weight. (a) Spring. 
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usually so designed that i t  exerts a nearly constant force on the control 
column. Thus both weight and spring require an additive stick force A P  to 
maintain equilibrium. These forces are 

a A P  = n W  - for the weight 
b 

c A P  = T - for the spring 
b 

where n = 1 for rectilinear fight, and is given by (6.10,4) for a pull-up. 

EFFECT UPON CONTROL FORCE TO TRIM AND h; 

The added constant term in the control force will produce a change in the 
characteristic as shown in Big. 7.2. The figure illustrates the case where the 

FIG. 7.2 Effect of bob weight and spring on the control-force characteristic. The trim 
tab is set to trim at the same speed in both cases. 

trim tab is set to produce the same trim speed as when the A P  is absent. 
The parabolic part of the variation is different for the two cases (see 6.8,9) 
because of the altered trim-tab setting. It is clear from the figure that the 
net result of adding the A P  and moving the tab is to produce a steeper 
gradient at the given trim speed. Now the gradient has been shown in Sec. 
6.9 to depend on the control-free static margin (hk - h). Thus the increased 
gradient corresponds to a n  apparent backward shift of the control-free neutral 
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point. The same conclusion is reached by consideration of the constant term 
of (6.8,9), which is proportional to (hk - h). The apparent shift of the 
neutral point may be calculated directly from it, i.e. 

a'b 
A P  = GS,E,w hh:, 

A 

The term "apparent shift" of the N.P. is used above because the N.P. 
location depends on Cia  and Cba, and the latter are not influenced at all by 
AP.  This is readily demonstrated. When the pilot exerts no additional force 
on the control, the hinge moment is given by 

and hence the free elevator angle becomes 

Equation (7.1,3) shows that the presence of A P  at  constant speed simply 
changes 6,,,,, by a constant. Consequently, substitution of (7.1,3) into (6.6,2) 
leads to the same values of C i a  and Cba as given previously by (6.6,5). 
Hence from (6.6, l la) hk is unchanged. 

EFFECT UPON STICK FORCE PER g AND hk 

When A P  is provided by a spring, then it is not dependent in any way on 
acceleration of the airplane. Hence the addition of a spring does not alter 
the stick force per g or the maneuver point. The bob weight, on the other hand, 
is affected by airplane acceleration. At load factor n, the effective weight of 
the bob is increased from W to nW, and hence induces an additional stick 
force of ( n  - 1) AP. The stick force per g is thereby increased by the amount 

Since Q is proportional to h; - h, this increase moves the maneuver point 
aft. Consideration of (6.10,15) shows this shift to be 

A P  Ah:, = - 2,uA 
GS,Eew a1b2(2,u - CL,) 
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This movement of the maneuver point however, unlike that of the N.P., is 
real, since the maneuver point is dejned by the control force per g. 

7.2 INFLUENCE OF HIGH-LIFT DEVICES ON TRIM AND 
PITCH STIFFNESS 

Conventional airplanes utilize a wide range of aerodynamic devices for 
increasing CLmax. These include various forms of trailing edge elements 
(plain flaps, split flaps, slotted flaps, etc.), leading edge elements (drooped 
nose, slats, slots, etc.) and purely fluid mechanical solutions such as boundary 
layer control by blowing. Each of these has its own characteristic effects on 
the lift and pitching moment curves, and i t  is not feasible to  go into them in 
depth here. The specific changes that result from the "configuration-type" 
devices, i.e. flaps, slots, etc., can always be incorporated by making the 
appropriate changes to Crnaec..,,& and CLwb in (6.3,4) and following through the 

consequences. Consider for egample the common case of part-span trailing 
edge flaps on a conventional tailed airplane. The main aerodynamic effects 
of such flaps are illustrated in Fig. 7.3.t 

1. Their deflection distorts the shape of the spanwise distribution of lift 
on the wing, increasing the vorticity behind the flap tips, as in (a). 

2. They have the same effect locally as an increase in the wing-section 
camber, i.e. a negative increment in Cma.c. and a positive increment 
in CLwb. 

3. The downwash a t  the tail is increased; both eo and ar/aa will in general 
change. 

The change in wing-body C ,  is obtained from (6.3,4) as 

The change in airplane CL is 

and the change in tail pitching moment is 

When the increments AC, . and ACLwb are constant with a, then the only 
a.c.,,, 

t Note that a is still the angle of attack of the zero-lift line of the basic configuration, 
and that the lift with flap deflected is not zero at zero a. 



Spanwise loading-flaps down 

Oflaps Vorticity in wake 
/behind flap tips 

ie=== 
k 

a 

L 

Zero lift line, = 0 
\ ACm, 

(4 
FIQ. 7.3 Effect of part-span flaps. (a)  Change of lift distribution and vorticity. ( b )  
Changes in forces and moments. (c) Change in CL. (d) Change in downwash. ( e )  Change 
in C,. 
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effect on CLa and Cma is that of ae/aa, and from (6.3,31) and (6.3,34a) these 
are 

The net result on the CL and C, curves is obviously very much configuration 
dependent. If the C, - a relation were as in Fig. 7.3e, then the trim change 
would be very large, from a, at af = 0 to a,  after flap deflection. The C ,  at 
a,  is much larger than at a, and hence if the flap operation is to take place 
without change of trim speed, a down-elevator deflection would be needed 
to reduce atrim to a, (Fig. 7.36). This would result in a nose-down rotation 
of the aircraft. 

7.3 INFLUENCE OF THE PROPULSIVE SYSTEM ON TRIM 
AND PITCH STIFFNESS 

The influence of the propulsive system upon trim and stability may be 
both important and complex. The range of conditions to be considered in 
this connection is extremely wide. In  the first place, there are several types 
of propulsive units in common use-reciprocating-engine-driven propellers, 
turbojets, propeller-jets, and rockets. In  the second place, the operating 
condition may be anything from hovering to reentry. Finally, the variations 
in engine-plus-vehicle geometry are very great. The analyst may have to deal 
with such widely divergent cases as a high-aspect-ratio straight-winged 
airplane with six wing-mounted counterrotating propellers or a low-aspect- 
ratio delta with buried jet engines. Owing to its complexity, a definite and 
comprehensive treatment of propulsive system influences on stability is not 
possible. There does not exist sufficient theoretical or empirical information 
to enable reliable predictions to be made under all the above-mentioned 
conditions. However, certain of the major eEects of propellers and propulsive 
jets are sufficiently well understood to make it  worth while to discuss them, 
and this is done in the following. 

In a purely formal sense, of course, it is only necessary to add the appropri- 
ate direct effects, Cmo_ and aCmp/aa in (6.3,34 and 35), together with the 
indirect effects on t h i  various wing-body and tail coefficients in order to  
calculate all the results with power on. 

When calculating the trim curves (i.e. elevator angle, tab angle, and 
control force to trim) the thrust must be that required to maintain equilib- 
rium a t  the condition of speed and angle of climb being investigated (see 
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Sec. 6.4). For example (see Fig. 6.11, for flight a t  speeds below about M = 3 
(see Sec. 5.9) and assuming that ug, < 1 

CT = CD + CWsiny 

Cw COS y = G, + CTaT 
(a)  (7.3,l) 
(b )  

Solving for C,, we get 

Except for very steep climb angles, aT tan y < 1, and we may write 
approximately, 

CT=CD+CLtany  (7.3,3) 

Let the thrust line be offset by a distance zp  from the C.G. (as in Fig. 7.5) 
and neglecting for the moment all other thrust contributions to the pitching 

(a) gliding flight 

Climbing flight 
- f>O 

0 
. .-..--...-. 

flight, y = 0 

gliding flight 

I T=O, 2 
gliding flighi 

(b) 
FIG. 7.4 Effect of direct thrust moment on C, curves. (a) Constant y. (b )  Constant 
thrust and power. 
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moment but Tz,, we have 

C = C  Z" 
m, 

T i  

= (CD + CL tan y )  

Now let CD be given by the parabolic polar (6.1,2), so that 

z c,. = (CDmi, + KCL' + CL tan y )  
E 

(7 .33 )  

Strictly speaking, the values of CD and CL in (7.3,4 and 5 )  are those for 
trimmed flight, i.e. with 6, = det,,,. For the purposes of this discussion of 
propulsion effects we shall neglect the effects of 6, on CD and CL, and assume 
that the values in (7.3,5) are those corresponding to 6, = 0. The addition of 
this propulsive effect to the C ,  curve for rectilinear gliding flight in the 
absence of aeroelastic and compressibility effects might then appear as in 
Fig. 7.4a. We note that the gradient -dCm/dCL for any value of y > 0 is less 
than for unpowered flight. If dCJdCL is used uncritically as a criterion for 
stability [as in (6.3,21)] an entirely erroneous conclusion may be drawn from 
such curves. 

(i) Within the assumptions made above, the thrust moment Tz, is 
independent of a, hence aC,/au = 0 and there is no change in the 
N.P. from that for unpowered fight. 

(ii) A true analysis of stability when both speed and u are changing 
requires that the propulsive system controls (e.g. the throttle) be 
kept jixed, whereas each point on the curves of Fig. 7.4a corresponds 
to a different throttle setting. This parallels exactly the argument of 
Sec. 6.4 concerning the elevator trim slope. For in fact, under the 
stated conditions, the C ,  - CL curve is transformed into a curve of 
Getrimvs. V by using therelations 6,,,,,=- C,(u)/Cmd and CL = W/ipV2S .  
The slopes of C ,  vs. CL and VS. V will vanish together. 

If a graph of C ,  vs. CL be prepared for fixed throttle, then y will be a 
variable along it, and its gradient dC,/dCL is an index of stability, as shown 
in Chapter 9. The two idealized cases of constant thrust and constant power 
are of interest. If the thrust a t  fixed throttle does not change with speed, 
then we easily find 

and 
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If the power P is invariant, instead of the thrust,, then T = PIV and we 
find 

. . ,  

whence dcmp - 3  P Jx I, C2 
dCL 2 W 2w E 

(4 

Thus in the constant thrust case, the power-off C ,  - GL graph simply has 
its slope changed by the addition of thrust, and in the constant power case 
the shape is changed as well. The form of these changes is illustrated in Fig. 
7.46 and it is evident by comparison with 7.4a that the behavior of dCm/dCL 
is quite different in these two situations. 

THE INFLUENCE OF RUNNING PROPELLERS 

The forces on a single propeller are illustrated in Fig. 7.5, where u, is the 
angle of attack of the local flow a t  the propeller. It is most convenient to 
resolve the resultant into the two components T along the axis, and N ,  in 

FIG. 7.5 Forces on a propeller. 

the plane of the propeller. The moment asociated with T has already been 
treated above, and does not affect Cmz. That due to AT, is 

where CNu = N,/&pV2S, and S ,  is the propeller disk area. To get the total 
AC, for several propellers, increments such as (7.3,7) must be calculated for 
each and summed. Theory shows (ref. 7.4) that for small angles GNU is 
proportional to u,. Hence N ,  contributes to both Cmo, and aCmp/au. The 
latter is 
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If the propeller were situated far from the flow field of the wing, then au,/au 
would be unity. However, for the common case of wing-mounted tractor 
propellers with the propeller plane close to  the wing, there is a strong upwash 
E ,  a t  the propeller. Thus 

u, = u + + const (a) 

and 

where the constant in (7.3,9a) is the angle of attack of the propeller axis 
relative to the airplane zero-lift line. Finally, 

INCREASE OF WING LIFT 

When a propeller is located ahead of a wing, the high-velocity slipstream 
causes a distortion of the lift distribution, and an increase in the total lift. 
This is a principal mechanism in obtaining high lift on so-called deflected 
slipstream STOL airplanes. For accurate results that allow for the details 
of wing and flap geometry powered-model testing is needed. However, for 
some cases there are available theoretical results (refs. 7.5 to 7.7) suitable for 
estimates. Both theory and experiment show that the lift increment tends 
to  be linear in a for constant CT,  and hence has the effect of increasing a,,, 
the lift-curve slope for the wing-body combination. From (6.3,36) this is 
seen to reduce the effect of the tail on the N.P. location, and can result in a 
decrease of pitch stiffness. 

EFFECTS O N  THE TAIL 

The propeller slipstream can affect the tail principally in two ways. 
(1) Depending on how much if any of the tail lies in it, the effective values 
of a, and a, will experience some increase. (2) The downwash values E,  and 
ae/acr may be appreciably altered in any case. Methods of estimating these 
effects are at best uncertain, and powered-model testing is needed to get 
results with engineering precision for most new configurations. However, 
some empirical methods (refs. 7.8 to 7.10) are available that are suitable for 
some cases. 

EXAMPLE OF PROPELLER EFFECT 

Figure 7.6 shows the large effects of thrust on a deflected-slipstream STOL 
configuration. The data presented are from wind-tunnel tests reported in 



a, deg. 

(a) 
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(c) 

F I ~ .  7.6 Longitudinal characteristics of a deflected-slipstream STOL configuration 
(from ref. 7.11). (a) Cl; vs. a. ( b )  CL vs. CD. ( c )  Cm vs. a. 

ref. 7.11. The configuration has two tractor propellers, full-span double 
slotted flaps deflected 45", and a high tail. The drag coefficient C$ plotted on 
Fig. 7.6b is the net streamwise force, and includes the thrust as a negative 
drag. The effect of the slipstreams on the downwash was large. For the case 
shown, a ~ / a ~  increased by 100% between CT = 0 and 1.25. At the same 
time CLa increased from .O68 to .130. A large decrease in static margin at 
a  = 0 due to adding thrust is found from the data: 

This represents a forward movement of the N.P. of 28% F. 

THE INFLUENCE OF JET ENGINES 

The direct thrust moment of jet engines is treated as shown at the 
beginning of this section, the constant-thrust idealization given in (7.3,6) 
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often being adequate. I n  addition, however, there is a normal force on jet 
engines as well as on propellers. 

l e t  Normal Force. The air which passes through a propulsive duct 
experiences, in general, changes in both the direction and magnitude of its 
velocity. The change in magnitude is the principal source of the thrust, and 
the direction change entails a force normal to the thrust' line. The magnitude 
and line of action of this force can be found from momentum considerations. 
Let the mass flow through the duct be m' slugs per second, and the velocity 

FIG. 7.7 Momentum change of engine air. 

vectors at the inlet and outlet be Vi and Vj. Application of the momentum 
principle then shows that the reaction on the airplane of the air flowing 
through the duct is 

F = -m'(V, - V i )  + F' 

where F' is the resultant of the pressure forces acting across the inlet and 
outlet areas. For the present purpose, F' may be neglected, since it is approxi- 
mately in the direction of the thrust T. The component of P normal to the 
thrust line is then found as in Fig. 7.7. It acts through the intersection of 
& and Vj. The magnitude is given by 

Nj = m'Vi sin 8 
or, for small angles, 

iVj = m' Vie 

In  order to use this relation, both Vi  and 8 are required. It is assumed that 
Vi  has that direction which the flow would take in the absence of the engine; 
i.e. 8 equals the angle of attack of the thrust line aj plus the upwash angle 
due to wing induction E~. 

8 = ~j + €5 (7.3,12) 
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It is further assumed that the magnitude Vi is determined by the mass flow 
and inlet area; thus 

where A, is the inlet area, and pi the density in the inlet. We then get for 
N j  the expression 

The corresponding pitching-moment coefficient is 

Since the pitching moment given by (7.3,14) varies with a at constant 
thrust, then there is a change in Cma given by 

The quantities m' and pi can be determined from the engine performance 
data, and for subsonic flow, ae,/aa is the same as the value ae,/aa used for 
propellers. axj/aa can be calculated from the geometry. 

Jet Induced Inflow. A spreading jet entrains the air that surrounds it, as 
illustrated in Fig. 7.8, thereby inducing a flow toward the jet axis. If a 
tailplane is placed in the induced flow field, the angle of attack will be 
modified by this inflow. A theory of this phenomenon which allows for the 
curvature of the jet due to angle of attack has been formulated by Ribner 

FIG. 7.8 Jet-induced inflow. 
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(ref. 7.2). This i d o w  at the tail may vary with a sufficiently to reduce the 
stability by a significant amount. 

7.4 EFFECT OF STRUCTURAL FLEXIBILITY 

Many vehicles when flying near their maximum speed are subject to 
important aeroelastic phenomena. Broadly speaking, we may define these 
as the feedback effects upon the aerodynamic forces of changes in the 
shape of the airframe caused by the aerodynamic forces. No real structure 
is ideally rigid, and aircraft are no exception. Indeed the structures of flight 
vehicles are very flexible when compared with bridges, buildings, ?nd 
earthbound machines. This flexibility is an inevitable characteristic of 
structures designed to be as light as possible. The aeroelastic phenomena 
which result may be subdivided under the headings static and dynamic. 
The static cases are those in which we have steady-state distortions associated 
with steady loads. Examples are aileron reversal, wing divergence, and the 
reduction of longitudinal stability. Dynamic cases include buffeting and 
flutter. In  these the time dependence is an essential element. From the 
practical design point of view, the elastic behavior of the airplane affects all 
three of its basic characteristics: namely performance, stability, and 
structural integrity. This subject occupies a well-established position as a 
separate branch of aeronautical engineering. For further information the 
reader is referred to  one of the books devoted to  it (refs. 5.11 and 5.12). 

In  this section we take up by way of example a relatively simple aero- 
elastic effect; namely, the influence of fuselage flexibility on longitudinal 
stiffness and control. Assume that the tail load L ,  bends the fuselage so that 
the tail rotates through the angle h a ,  = -kLt (Fig. 7.9) while the wing 
angle of attack remains unaltered. The net angle of attack of the tail will 
then be 

at = uwb - E $ it - kLt 

ALt 

FIG. 7.9 Tail rotation due to fuselage bending. 



Longitudinal aerodynamic characteristics-part 2 259 

and the tail lift coefficient a t  S, = 0 will be 

CLt = ataL = at(awb - E + it - kLt) 

But L t  = CLt+pV2St, whence 

Solving for CL,, we get 

Comparison of (7.4,2) with (6.3,26) shows that the tail effectiveness has been 
reduced by the factor I/[l + kat(p/2)V2St]. The main variable in this 
expression is V, and it is seen that the reduction is greatest a t  high speeds. 
From (6.3,36), we find that the reduction in tail effectiveness causes the 
neutral point to move forward. The shift is given by 

where 

The elevator effectiveness is also reduced by the bending of the fuselage. 
For, if we consider the case when 6, is different from zero, then (7.4,l) becomes 

and (7.4,2) becomes 

Thus the same factor 1/(1 + kat+pV2St) which operates on the tail lift 
slope a t  also multiplies the elevator effectiveness a,. 

7.5 GROUND EFFECT 

At landing and take-off airplanes fly for very brief (but none the less 
extremely important) time intervals close to the ground. The presence of 
the ground modifies the flow past the airplane significantly, so that large 
changes may take place in the trim and stability. For conventional airplanes, 
the take-off and landing cases provide some of the governing design criteria. 

The presence of the ground imposes a boundary condition which inhibits 
the downward flow of air normally associated with the lifting action of the 
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wing and tail. The reduced downwash has three main effects, being in the 
usual order of importance : 

(i) A reduction in E,  the downwash angle at the tail. 
(ii) An increase in the wing-body lift slope a,,. 

(iii) An increase in the tail lift slope a,. 

The problem of calculating the stability and control near the ground then 
resolves itself into estimating these three effects. When appropriate values 
of ac/atc, a,,, and a, have been found, their use in the equations of the 
foregoing sections will readily yield the required information. The most 
important items to be determined are the elevator angle and stick force 
required to maintain CLmax in level flight close to the ground. It will usually 
be found that the ratio atlaw, is decreased by the presence of the ground. 
Equation (6.3,36) shows that this would tend to move the neutral point 
forward. However, the reduction in a ~ / a t c  is usually so great that the net 
effect is a large rearward shift of the neutral point. Since the value of CmB.C. 
is only slightly affected, i t  turns out that the elevator angle required to 
trim at CLmax is much larger than in flight remote from the ground. It 
commonly happens that this is a critical design condition on the elevator, 
and may govern the ratio S,/S,, or the forward C.G. limit (see Sec. 7.6). 

C.G. LIMITS 

One of the dominant parameters of longitudinal stability and control has 
been shown in Chapter 6 to be the fore-and-aft location of the C.G. The 
question now arises as to what range of C.G. position is consistent with 
satisfactory flying qualities. This is a critical design problem, and one of the 
most important aims of stability and control analysis is to provide the 
answer to it. Since aircraft always carry some disposable load (e.g. fuel, 
armaments), and since they are not always loaded identically to begin with 
(variations in passenger and cargo load), i t  is always necessary to cater for a 
variation in the C.G. position. The range to be provided for is kept to a 
minimum by proper location of the items of variable load, but still it often 
becomes a difficult matter to keep the flying qualities acceptable over the 
whole C.G. range. Sometimes the problem is not solved, and the airplane is 
subjected to restrictions on the fore-and-aft distribution of its variable load 
when operating a t  part load. 

THE AFT LIMIT 

The most rearward allowable location of the C.G. is determined by con- 
siderations of longitudinal stability and control sensitivity. The behavior of 
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FIG. 7.10 The five control gradients. 

the five principal gradients discussed in Chapter 6 are summarized in Fig. 
7.10 for the case when the aerodynamic coefficients are independent of 
speed. From the handling qualities point of view, none of the gradients 
,;hould be "reversed," i.e. they should have the signs associated with low 
values of h. When the controls are reversible, this requires that h < hh. If 
the controls are irreversible, and if the artificial feel system is suitably 
designed, then the control force gradient aP/aV can be kept negative to 
values of h > ha, and the rear limit can be somewhat farther back than with 
reversible controls. The magnitudes of the gradients are also important. If 
they are allowed to fall to very small values the vehicle will be too sensitive 
to  the controls. When the coefficients do not depend on speed, as assumed 
for Fig. 7.10, the N.P. also gives the stability boundary (this is proved in 
Chapter 9), the vehicle becoming unstable for h > ha with free controls or 
h > h, with fixed controls. If the coefficients are not independent of speed, 
e.g. C ,  = C,(M), then the C.G. boundary for stability will be different and 
may be forward of the N.P. However (this is also shown in Chapter 9) the 
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nature of the instability is very much dependent on whether C,, is greater 
or less than zero, i.e. on whether the C.G. is forward or aft of the relevant 
N.P. In  the former case the instability is less severe than in the latter, and 
hence the N.P. still provides a good practical criterion for stability. 

By the use of automatic control systems (see Chapter 11) it is possible to 
increase the natural stability of a flight vehicle. Xtubility augmentation 
systems (SAS) are in widespread use on a variety of airplanes and rotorcraft. 
If such a system is added to the longitudinal controls of an airplane, it 
permits the use of more rearward C.G. positions than otherwise, but the 
risk of failure must be reckoned with, for then the airplane is reduced to its 
"natural" stability, and would still need to be manageable by a human pilot. 

THE FORWARD LIMIT 

As the C.G. moves forward, the stability of the airplane increases, and 
larger control movements and forces are required to maneuver or change the 
trim. The forward C.G. limit is therefore based on control considerations 
and may be determined by any one of the following requirements: 

(i) The stick force per g shall not exceed a specified value. 
(ii) The stick-force gradient at trim, aP/aV, shall not exceed a specified 

value. 
(iii) The stick force required to land, from trim a t  the approach speed, 

shall not exceed a specified value. 
(iv) The elevator angle required to land shall not exceed maximum up 

elevator. 
(v) The elevator angle required to raise the nose-wheel off the ground at 

take-off speed shall not exceed the maximum up elevator. 

7.7 LONGITUDINAL AERODYNAMIC DERIVATIVES 

The small-disturbance equations of motion given in Chapter 5 used the 
technique of expressing aerodynamic forces and moments in terms of the 
aerodynamic derivatives. The remainder of this chapter is devoted to a 
discussion of these derivatives. Some of the main aerodynamic derivatives 
have already been discussed in some detail in Chapter 6 ,  i.e. CLa, Cm,, Che,, 
CLa, C,,, and Ch,, Of the remaining a derivatives, CDa is immediately 
obtained from (6.1,2) as 

CD, = ~ K C L ~ C L ,  (7.721) 

where CLe is the value of CL in the reference equilibrium flight condition. 
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The thrust derivative CTa is not readily predicted by theory, and would 
usually be small enough to neglect. 

7.8 THE V DERIVATIVES (CT,, CDs9 CLVp CmV, Chev) 

This group of derivatives gives the changes that occur in the coefficient 
when the fight speed V changes, while the other variables, i.e. u, q, zE, a,, 
remain constant. It is important to remember that the propulsion controls 
(e.g. the throttle) are also kept fixed. 

THE DERIVATIVE CTs 

The derivative CTV depends on the type of propulsion system, specifically 
on how T varies with V at fixed throttle. In general it is given by 

For constant-thrust propulsion, as for jet and rocket engines, aT/aV = 0 

and , C = -2CTe 
T v 

For constant-power propulsion, T V  = const, whence 

so that 

and C = -3C 
T V  T. 

Note that, from (7.3,2) 

CT, = 1 - uT tan y ). (C,+CLtany 
For piston-engine-propeller systems, the usual fixed-control case implies 

fixed throttle and constant RPM. In  that case the brake horsepower is 
constant, and the thrust is given by 
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where q = propulsive efficiency and PB is the engine shaft power. We then 
have 

T d V  + V d T  = PBdq 

and 

After substituting for PB from (7.8,3) we get 

This relation is useful, since the variation of q with V would normally be 
known for a propeller-driven airplane. 

THE DERIVATIVE CD,, 

I n  order to include all the main effects of speed changes formally, we shall 
assume that the drag coefficient is a function of Mach number M, the 
dynamic pressure 

p -1v2 a -  Z P  (7.88) 

and the thrust coefficient, i.e. 

'D = CD( M, pd, CT) 
Then 

Since M = V/a, where a is the speed of sound, then 

-- aM - I - a ~ ,  - pV and av a ' av 

Thus 

The aeroelastic effect on CDV (the p, term) is not likely to be large enough to 
need to be included in other than exceptional cases. 
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THE DERIVATIVES CLv, C,,, CheY 

The derivations for these three derivatives are exactly the same as for 
CDV above, and the results are exactly the same as (7.8,7) except that CD is 
replaced by the appropriate coefficient. 

The Mach number effect on these three derivatives can be calculated from 
aerodynamic theory for both subsonic and supersonic flow. It is quite 
sensitive to  the shape of the wing, high-aspect ratio straight wings being 
most affected by M, and highly-swept and delta wings being least affected. 
An upper limit is obtained by considering two-dimensional flow. For subsonic 
edges, the Prandtl-Glauert theory? and simple sweep theory combine to give 
for an infinite wing of sweepback angle A 

a$ 
C ,  = M cos A < 1 

(1  - M 2  cos2 A)% ' 

where ai is the lift-curve slope in incompressible flow. Whence 

In  level flight, with L = W, M2CL is a constant, so that M aCL/aM varies 
as 1/(1 - M2 C O S ~  A). The theory of course breaks down at M N sec A where 
an infinite value would be predicted, but nevertheless large values of 
M aCL/aM may be expected near that Mach number. At supersonic speeds, 
two-dimensional theory for swept wings gives the result 

4u cos A 
C ,  = M cos A > 1 

(M2 cos2 A - 1)% ' 

After differentiating with respect to  M, the result obtained is again (7.8,8), 
which therefore applies for infinite yawed wings a t  both subsonic and 
supersonic speeds. The results given above derive from a linear theory that 
predicts proportional changes in the pressure distribution when lW is 
changed-i.e. the pressure distributions remain unaltered in form, but 
changed in magnitude. Hence the results for C ,  and Che would be of the same 
form, i.e. 

and 

i. A. M. Kuethe and J. D. Sohetzer, Foundations of Aerodynamics, Sees. 11.6, 11.14. 
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The vanishing of aCm/aM will hold only for truly subsonic and truly super- 
sonic flows. I n  the transition region between them there is a very important 
redistribution of pressure, such that the center of pressure on two-dimensional 
wings moves from .25c in subsonic flow to .50c in supersonic flow. This 
would lead to a negative aCm/aM, possibly of large magnitude, in the 
transonic range. The vagaries of transonic flow are such that test results are 
the only way to get reasonably reliable results in this speed range. 

No general rules can be given for the derivatives with respect to pa or C,. 
Aeroelastic analysis or wind-tunnel testing must be used to find these. By 
way of example, we can calculate the contribution to aCm/apd associated with 
the fuselage bending treated in Sec. 7.4. We found there that the lift coefficient 
of the tail is given by 

The pitching moment contributed by the tail is (6.3,8) 

Hence 

When (7.8,11) is differentiated with respect to pa and simplified, and the 
resulting expression is substituted into (7.8,12), we obtain the result 

The corresponding contribution to Cmp is 

All the factors in this expression are positive, except for Cmt, which may be 
of either sign. The contribution of the tail to C,,, may therefore be either 
positive or negative. The tail pitching moment is usually positive at  high 
speeds and negative a t  low speeds. Therefore its contribution to CmV is 
usually negative at  high speeds and positive at  low speeds. Since the dynamic 
pressure occurs as a multiplying factor in (7.8,14), then the aerolastic effect 
on Cmp goes up with speed and down with altitude. 

Figure 7.6 shows the large effects of thrust coefficient on CL, CD, Cm and 
values of the associated derivatives aCL/aCT etc. can be found from data 
in this form. 
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7.9 THE q DERIVATIVES (C,, Cma, C h e )  

These derivatives represent the aerodynamic effects that accompany 
rotation of the airplane about a spanwise axis through the C.G. while a 
remains zero. An example of this kind of motion was treated in Sec. 6.10 
(i.e. the steady pull-up). Figure 7.1171 shows the general case in which the 
flight path is arbitrary. This should be contrasted with the situation 
illustrated in Fig. 7.11a, where q = 0 while cc is changing. 

(b)  

FIG. 7.11 (a) Motion with zero q, but varying u. ( b )  Motion with zero u, but varying q. 

Both the wing and the tail are affected by the rotation, although, when 
the airplane has a tail, the wing contribution to CLa and Cma is often negligible 
in comparison with that of the tail. In  such cases it is common practice to 
increase the tail effect by an arbitrary amount, of the order of lo%, to allow 
for the wing and body. 

CONTRIBUTIONS OF A TAIL 

As illustrated in Fig. 7.12, the main effect of q on the tail is to increase its 
angle of attack by (ql,/V) radians. It is this change in a, that accounts for 
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V 

v 

v -------_______ 

FIG. 7.12 Effect of pitch velocity on tail angle of attack. 

the changed forces on the tail. The assumption is implicit in the following 
derivations that the instantaneous forces on the tail correspond to its 
instantaneous angle of attack; i.e. no account is taken of the fact that i t  
takes a finite time for the tail lift to build up to its steady-state value 
following a sudden change in q. [A method of including this refmement has 
been given by Tobak (ref. 7.12).] The derivatives obtained are therefore 
quasistatic. 

The change in tail lift associated with q is 

and the corresponding change in total lift coefficient is 
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It follows that the tail contribution to CLQ is 

Cmq OF A TAIL 

The increment in Cm corresponding to ACLt is 

ACm = - V H  ACLl 
and it follows easily that 

ACm - ( c ~ J ~ ~ ~ ~  = - - -2at vH 
4" C 

THE DERIVATIVE C,, 

For a tail elevator, the change in cc, produces a change in hinge moment 
given by [see (6.5,1)] 

Ache = b, " v 
1, whence it follows that Ch4 = A+ = 2b - 

1 - 
C 

CONTRIBUTIONS OF A WING 

As previously remarked, on airplanes with tails the wing contributions 
to the q derivatives are frequently negligible. However, if the wing is highly 
swept or of low aspect ratio, i t  may have significant values of CL, and Cmq; 
and of course, on tailless airplanes, the wing supplies the major contribution. 
The q derivatives of wings alone are therefore of great engineering importance. 

Unfortunately, no simple formulas can be given, because of the complicated 
dependence on the wing planform and the Mach number. However, the follow- 
ing discussion of the physical aspects of the flow indicates how linearized 
wing theory can be applied to the problem. Consider a plane lifting surface, 
a t  zero cr, with forward speed V and angular velocity q about a spanwise 
axis (Fig. 7.13). Each point in the wing has a velocity component, relative 
to the resting atmosphere, of qx normal to the surface. This velocity dis- 
tribution is shown in the figure for the central and tip chords. Now there is an 
equivalent cambered wing which would have the identical distribution of 
velocities normal to its surface when in rectilinear translation a t  speed V. 
This is illustrated in Fig. 7 . 1 4 ~ .  The cross section of the curved surface S is 



Fro. 7.13 Wing velocity distribution due to pitching. 

-==L 
Fra. 7.14 The equivalent cambered wing. 
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shown in ( b ) .  The normal velocity distribution will be the same as in Fig. 7.13 

Hence 

and the cross section of X is a parabolic arc. In  linearized wing theory, both 
subsonic and supersonic, the boundary condition is the same for the original 
plane wing with rotation q and the equivalent curved wing in rectilinear flight. 
The problem of finding the q derivatives then is reduced to that of finding 
the pressure distribution over the equivalent cambered wing. Because of the 
form of (7.9,4), the pressures are proportional to q/V. From the pressure 
distribution, CL,, Cm,, and Gheg can all be calculated. The derivatives can in 
principle also be found by experiment, by testing a model of the equivalent 
wing. 

The values obtained by this approach are quasistatic; i.e. they are steady- 
state values corresponding to u = 0 and a small constant value of q. This 
implies that the fight path is a circle (as in Fig. 6.32), and hence that the 
vortex wake is not rectilinear. Now both the linearized theory and the wind- 
tunnel measurement apply to a straight wake, and to this extent are 
approximate. Since the values of the derivatives obtained are in the end 
applied to arbitrary flight paths, as in Fig. 7.11b, there is little point in 
correcting them for the curvature of the wake. 

The error involved in the application of the quasistatic derivatives to 
unsteady flight is not so great as might be expected. It has been shown 
that, when the flight path is a sine wave, the quasistatic derivatives apply 
so long as the reduced frequency is small, i.e. 

where w is the circular frequency of the pitching oscillation. If 1 is the 
wavelength of the flight path, then 

so that the condition k < 1 implies that the wavelength must be long 
compared to the chord, e.g. I > 605 for k < .05. 

DEPENDENCE ON h 

Because the axis of rotation, Fig. 7.13, passes through the C.G., the 
results obtained are dependent on h. The nature of this variation is found as 
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' Normal velocity B 
(a) 

F I ~ .  7.15 Effect of C.G. location on CL, Cma. 

follows. Let the axis of rotation be at A, Fig. 7.15, and let the associated 
lift and moment be 

cLA=c  la^ 4; cmA = CnzaAd (7.9,5) 

Now let the axis of rotation be moved to B, with the change in normal 
velocity distribution shown on the figure. Since the two normal velocity 
distributions differ by a constant, (the upward translation qE Ah) the 
difference between the two pressure distributions is that. associated with a 
flat plate at angle of attack 

This-angle of attack introduces s lift increment acting at the wing aero- 
dynamic center of amount 

qE A C L = C L a =  - -AhC 
a V La 

(7.9,7) 

so that for axis of rotation B, 
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i.e. CLa is linear in h. The incremental moment Bbout B is 

ACm = CL, ,~ Ah + A C L ( ~ B  - hn,) 

= [C Ah - 2CLa Ah(hB - h,,,)]d 

and ACma = - ~ C L ~ ( ~ B  - hnvb)I Ah (7.9,9) 

whence Cmq is quadratic in h. From (7.9,8) and (7.9,9) by taking the limit 
as Ah -+ 0 we get 

- -2Cq. -- 
ah 

(a) 
(7.9,lO) asa = CLa - 2C h - had) 

ah ~ a (  
(b) 

By integrating (7.9,10) 

The forms of CLa and Cma are sketched on Fig. 7.15b. h, is the C.G. position 
for zero CL,, ii that for maximum Cm , and ern. is the maximum (least 
negative) value of Cma. From (7.9,lOb) aRd (7.9,11a), we find 

The linear theory of two-dimensional thin wings gives for supersonic flow: 
h 0 = L  a 

and for subsonic flow: 
ho = 4 
h = &  

0 ma = O  

PITCH DAMPING OF PROPULSIVE JETS 

When gases flow a t  high velocity inside jet or rocket engines, there is a 
consequent rate of change of moment of inertia which leads to an inertia 
term in the moment equation [ j B w B  in (5.6,7)]. Instead of retaining it as a 
term on the r.h.s., it is convenient to transpose it to the 1.h.s. and treat it as 
an external moment AG, = -.YBwB. Considering only pitching motion, 
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the corresponding terms in the scalar moment equations (5.6,8) are 

The corresponding q derivatives are therefore 

AL, = lxy 
AM, = -1 
AN, = I,, 

We restrict ourselves to consideration only of propulsion systems that have 
inertial symmetry with respect to the xz plane, so Ix, = I,, = 0, and only 
AM, remains. Figure 7.16 shows three types of propulsion system, for each 

FIG. 7.16 Mechanism of jet damping. (a)  Jet engine and duct. (b) Solid fuel rocket. 
(c) Liquid fuel rocket. 
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of which we assume that the velocities are uniform across surfaces 1 and 2. 
For the jet engine 1 is the air inlet and for the rockets it is the moving 
boundary of the fuel. u2 is the jet exit velocity, u, is the inlet velocity for the 
jet, and the rate of movement of the relevant interface for the rockets. 

The Om coordiate system of Fig. 7.16 is taken fixed to the solid part of 
the vehicle, and we focus our attention on the material system comprising 
the solid, liquid, and gaseous constituents of the vehicle at time zero. The 
boundaries of this system move in a time dt as illustrated; as a result its mass 
center moves away from the origin 0, and its moment of inertia changes. 
Let I, be the moment of inertia around 0, and Ij be that around the displaced 
mass center, at coordinates (Z,Z). By the parallel axis theorem for moment 
of inertia we have 

where m is, of course, the total vehicle mass. It follows that 

and a t  t = 0, when 5 = 2 = 0, 1; = I,. Thus the movement of the mass 
center associated with the jet flow does not contribute to the jet damping 
effect explicitly. The change in I, in time dt is given by 

In the second term, for a jet engine, p, is, of course, the density of the inlet 
air. For a rocket it is, strictly speaking, the difference in density between the 
fuel and the adjacent gas. For all practical purposes the latter can clearly 
be neglected. If f 2  and 2, are the component mean-square distances to the 
surfaces A, and A,, (7.9,18) can be expressed as 

Now p,u,A, is the mass flux across Ai, and may be taken constant for all 
three types of system (the fuel mass flow in jet engines is much smaller than 
the air mass flow). Thus 

where m' = A,p,u, is the mass flow rate out of the jet. In many practical 
cases, for elongated slender vehicles, the x2 terms may be negligibly small. 
The result for the pitch damping in that case is 
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It will be negative, corresponding to positive damping, whenever the C.G. is 
closer to the inlet or the fuel surface than to the nozzle exit. For compactness 
we may write (2 for (ZZ2 - Z12) + (222 - Z12) SO that 

AM, = --m'E2 (7.9,22) 

The nondimensional coefficient follows as 

rn' E2 
AC m~ = - 4 - -  

pv8 c2 
It varies inversely as speed for constant propulsive mass flow m'. The thrust 
of the engine is given by 

T = rnlVj 

where Vj is the h a 1  velocity of the jet relative to the vehicle, so that (7.9,23) 
can be rewritten in terms of T instead of m'. The result is 

For jet airplanes in cruising flight this contribution to Cma is usually 
negligible. Only a t  high values of CT, and when the Cmq of the rest of the air- 
plane is small, would i t  be significant. On the other hand, a rocket booster a t  
lift-off, when the speed is low, has practically zero external aerodynamic 
damping and the jet damping becomes very important. 

7-10 THE a DERIVATIVES (CL,, Crn,, Che,) 

The & derivatives owe their existence to the fact that the pressure dis- 
tribution on a wing or tail does not adjust itself instantaneously to its 
equilibrium value when the angle of attack is suddenly changed. The 
calculation of this effect, or its measurement, involves unsteady flow. I n  
this respect, the ci derivatives are very different from those discussed 
previously, which can all be determined on the basis of steady-state 
aerodynamics. 

CONTRIBUTIONS OF A WING 

Consider a wing in horizontal flight a t  zero a. Let i t  be subjected to a 
downward impulse, so that it suddenly acquires a constant downward 
velocity component. Then, as shown in Fig. 7.17, its angle of attack undergoes 
a step increase. The lift then responds in a transient manner (the indicia1 
response) the form of which depends on whether M is greater or less than 1. 



/ Subsonic, M > 0 

I / Steady-state value 

FIG. 7.17 Lift response to step change in ci. (After Tobak, NACA Rept. 1188.) 
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I n  subsonic flight, the vortices whioh the wing leaves behind it can influence 
i t  a t  all future times, so that the steady state is approached only asymptot- 
ically. In  supersonic flight, the upstream traveling disturbances move more 
slowly than the wing, so that it outstrips the disturbance field of the initial 
impulse in a finite time t,. From that time on the lift remains constant. 

In order to h d  the lift associated with ti, let us consider the motion of an 
airfoil with a small constant u, but with q = 0 .  The motion, and the angle 
of attack, are shown in Fig. 7.18. The method used follows that introduced 
by Tobak (ref. 7.12). We assume that the differential equation whioh relates 
cL(t^) with a($) is linear. Hence the method of superposition may be used to 
derive the response to a linear a#). Let the admittance be A($). Then, 
[cf. (5.11,2)], the lift coefficient a t  time 2 is 

Since Q'(T) = Dcr = constant, then 

i 
CL(i) = Da A(2 - T )  dr  6. (7.10,l) 

The ultimate CL response to a unit-step a input is CLa. Let the lift defect 

be f ( f )  : i.e. 
A($) = cLa - f(2) 

Then (7.10,l) becomes 

where S ( f )  = j!=o f(i! - T )  d ~ .  The term S Dcr is shown on Fig. 7.18. Now, 
if the idea of representing the lift by means of aerodynamic derivatives is to 
be valid, we must be able to write, for the motion in question, 

where CLa and CL, are constants. Comparing (7.10,2 and 3) ,  we find that 
CL, = -S(f), a function of time. Hence, during the initial part of the motion, 

as already pointed out in Sec. 5.11 the derivative concept is invalid. However, 
for all finite wings,? the area ~ ( i )  converges to a finite value as t̂  increases 
indefinitely. In fact, for supersonic wings, S reaches its limiting value in a 
finite time, as is evident from Fig. 7.17. Thus (7.10,3) is valid,$ with constant 

t For two-dimensional incompressible flow, the area ~ ( 4  diverges as t + CQ. That is, 
the derivative concept is definitely not applicable to that case. 

$ Exactly for supersonic wings, and approximately for subsonic wings. 
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F I ~ .  7.18 Lift associated with B. 

CLh, for values of f greater than a certain minimum. This minimum is not 
large, being the time required for the wing to travel a few chord lengths. In  
the time range where S is constant, or differs only infinitesimally from its 
asymptotic value, the CL(f)  curve of Fig. 7.186 is parallel to CLaa. A similar 
situation exists with respect to C,  and C,,. 

We see from Fig. 7.18 that CLi, which is the lim - S ( f )  can be positive 
t- m for M = 0 and negative for larger values of M. 
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There is a second useful approach to the 2 derivatives, and that is via 
consideration of oscillating wings. This method has been widely used 
experimentally, and extensive treatments of wings in oscillatory motion are 
available in the literature,? primarily in relation to flutter problems. Because 
of the time lag previously noted, the amplitude and phase of the oscillatory 
lift will be different from the quasisteady values. Let us represent the 
periodic angle of attack and lift coefficient by the complex numbers 

C( = aOeiWt and C L  = CLoeiWt (7.10,4) 

where a,  is the amplitude (real) of a, and CLo is a complex number such that 
I CLol is the amplitude of the CL response, and srg CLo is its phase angle. The 
relation between CLo and cc, appropriate to the low frequencies characteristic 

Re 
FIG. 7.19 Vector diagram of lift response 

c ~ o  to oscillatory a. 

of dynamic stability is illustrated in Fig. 7.19. In  terms of these vectors, we 
may derive the value of CLdr as follows. The & vector is 

& = ioMoeiWt 
Thus CL may be expressed as 

Hence 

or, if the amplitude a,  is unity, CL& = IICLo]/k, where k is the reduced 
frequency oF/2 V. 

To assist in forming a physical picture of the behavior of a wing under 
these conditions, we give here the results for a two-dimensional$ airfoil in 

7 See bibliography. 
$ Rodden and Giesing (ref. 7.15) have extended and generalized this method. In 

particular they give results for finite wings. 
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incompressible flow. The motion of the airfoil is a plunging oscillation; i.e. 
it is like that shown in Fig. 7.11a, except that the flight path is a sine wave. 
The instantaneous lift on the airfoil is given in two parts (see Fig. 7.20) : 

A 

where 

CL, 

C.G. 

and F(k) and G(k) are the real and imaginary parts of the Theodorsen 
function C(k), plotted in Fig. 7.21. The lift that acts a t  the midchord is 
proportional to r i  = f/V, where z is the translation (vertically downward) of 
the airfoil. That is, i t  represents a force opposing the downward acceleration 
of the airfoil. This force is exactly that which is required to impart an 
acceleration f to a mass of air contained in a cylinder, the diameter of which 
equals the chord c. This is known as the "apparent additional mass." It is as 
though the mass of the airfoil were increased by this amount. Except in 
cases of very low relative density p = 2m/pSE, this added mass is small 
compared to that of the airplane itself, and hence the force CL, is relatively 
unimportant. Physically, the origin of this force is in the reaction of the air 
which is associated with its downward acceleration. The other component, 
CL1, which acts a t  the f chord point, is associated with the circulation around 
the airfoil, and is a consequence of the imposition of the Kutta-Joukowski 
condition a t  the trailing edge. It is seen that it contains one term proportional 
to M and another proportional to &. From Fig. 7.19, the pitching-moment 
coefficient about the C.G. is obtained as 

a - 0 

2 
C 

- h C + J Y  +c 
FIG. 7.20 Lift on oscillating two-dimensional airfoil. 
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Reduced frequency, k 
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Reduced frequency, k 

FIG. 7.21 The Theodorsen function. 

From (7.10,6 and 7), the following derivatives are found for frequency k. 

CLa = 2nF(k) 

The awkward situation is evident, from (7.10,8), that the derivatives are 
frequency-dependent. That is, in free oscillations one does not know the 
value of the derivative until the solution to the motion (i.e. the frequency) 
is known. In cases of forced oscillations a t  a given frequency, this difficulty 
is not present. 

When dealing with the rigid-body motions of flight vehicles, the character- 
istic nondimensional frequencies k are usually small, k < < 1. Hence it is 
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reasonable to use the F(k)  and G(k) corresponding to k + 0. For the two- 
dimensional incompressible case described above, lim F(k)  = 1, so that 

k--to 

CL, = 2a and Cma = 2a(h - i), the theoretical steady-flow values. This 
conclusion, that CLa and Cma are the quasistatic values, also holds for 

finite wings a t  all Mach numbers. The results for CLa and Cma are not so 
clear, however, since lim G(k)/k given above is infinite. This singularity is 
marked for the example of two-dimensional flow given above, but is not 
evident for finite wings at moderate aspect ratio. Miles (refs. 7.13, 7.14) 
indicates that the k log k tekm responsible for the singularity is not significant 
for aspect ratios less than 10, and the numerical calculations of Rodden and 
Giesing (ref. 7.15) show no difficulty a t  values of k as low as .001. Filotas' 
(ref. 7.16) more recent solutions for finite wings bear out Miles7 contention. 
Thus for finite wings definite values of CLa and Cma can be associated with 
small but nonvanishing values of k. If the airfoil has a control flap, the hinge 
moment associated with ci, Chea, behaves like CLa and Cma. The limiting 

values described above can be obtained from a first-order-in-frequency 
analysis of an oscillating, wing. To summarize, the u derivatives of a wing 
alone may be computed from the indicia1 responses of lift, pitching moment, 
and hinge moment, or from Jirst-order-inyrequency analysis of harmonically 
plunging wings. 

CONTRIBUTIONS OF A TAIL 

There is an approximate method for evaluating the contributions of a 
tail surface, which is satisfactory in many cases. This is based on the concept 
of the lag of the downwash. It neglects entirely the nonstationary character 
of the lift response of the tail to changes in tail angle of attack, and attributes 
the result entirely to the fact that the downwash a t  the tail does not respond 
instantaneously to changes in wing angle of attack. The downwash is assumed 
to be dependent primarily on the strength of the wing's trailing vortices in 
the neighborhood of the tail. Since the vorticity is convected with the 
stream, then a change in the circulation a t  the wing will not be felt as a 
change in downwash a t  the tail until a time At = l , /V has elapsed, where 1,  
is the tail length (Fig. 6.10). I t  is therefore assumed that the instantaneous 
downwash at the tail, ~ ( t ) ,  corresponds to the wing cc. at time (t - At). The 
corrections to the quasistatic downwash and tail angle of attack are therefore 
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CL, OF A TAlL 

The correction to the tail lift coefficient for the downwash lag is 

zt a€ 
ACLt = at Aci, = a,& - - v aor 

The correction to the airplane lift is therefore 

and ~ C L  a€ (C,.) . =- = -2aV - 
a tall H a o r  (7.10,ll) 

a (5) 
Cma OF A TAlL 

The correction to the pitching moment is obtained from ACLt as 

Therefore 

and 

The correction to or, produces a change in the elevator hinge moment 

Therefore 

and 
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7.1 1 AERODYNAMIC TRANSFER FUNCTIONS 

Finally, it should be remarked that there is no need to accept the small 
inaccuracy associated with the use of unsteady derivatives such as CL&, etc. 
In  Sec. 5.11 it was shown how the use of aerodynamic transfer functions 
could avoid this difficulty entirely, and equations (5.14,l to 3 )  were presented 
for this purpose. To obtain a transfer function from the indicia1 response, 
(5.11,6) can be applied. Thus if the step-function response of Fig. 7.17 is 
designated ALa(2), then 

QL,(s) = sALa(s) 

and similarly for all other transfer functions that appear in (5.14,l to 3) .  
When the information available is in the form of a frequency-response 

analysis or measurement, then the transfer function can be obtained from it 
directly. From (3.4,25) we have the general relation for frequency response 
of a linear system in terms of the transfer function. Thus, let Ga,(s) be the 
transfer function relating any aerodynamic coefficient Ca to any state 
variable v and Ga,(ik) be the frequency-response vector giving Ca for periodic 
v. G(s) is obtained from G(ik) by replacing ik by s,  or k by -is. 

7.12 THE z DERIVATIVES (CTs,  CDz, CLz, C,.) 

There are two main classes of z derivatives; those that are associated with 
ground proximity, and those that are associated with vertical gradients in 
the properties of the atmosphere. Of the latter the density gradient is the 
most important, and others can probably be ignored most of the time. 

We have described some of the effects of ground proximity in Sec. 7.5. 
To calculate the associated z derivatives one needs the data, either theoretical 
or experimental, on the variation of the various coefficients with height 
above ground. For configurations with large power effects, i.e. strong 
slipstreams or jets impinging on the ground, testing is generally required to 
get good results. The ground effects can be very large, and the z derivatives 
can exert a very important influence on the vehicle dynamics at landing 
and take-off. 

As to the effects of atmospheric gradients, the gradient ap/az has already 
been explicity included in the equations of motion (5.13,16), so that if T, D, 
L, M all vary exactly as p when the speed is constant then CT, etc. will all 
be zero. This assumption is probably good enough for D, L, and M, but not 
always for T. If the vehicle uses air-breathing engines, then T a pis reason- 
able, and CT, = 0; but if a constant-thrust rocket is used, then we have 
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aT1a.z = 0, and from the analysis on p. 183, 

The only other atmospheric gradients that might need to be included are 
those associated with Reynolds number R, and Mach number M. Sometimes, 
for very high altitudes the particulate nature of air becomes a factor. The 
Knudson number 

where A is the mean free path and I is a characteristic length of the vehicle, 
may then be used as an aerodynamic parameter. It is not a new independent 
variable, being related to  M and R,: 

where y is the ratio of specific heats. For air a rough approximation is 
K,  e MIR,. The circumstances when these gradients might be important 
are those involving very rapid changes of the flow field with the parameter 
in question-for example, near M = 1, the variations of M with height due 
to sound-speed gradient; and near the R, for boundary layer transition. 
A typical derivative would be calculated thus. Let C, stand for any of 
C ,  - . C,; then 

where 

and 

Finally, F aa ac, E av ac, C =-M - - -  R--- 
2 2  2a aM " 2~ a2 aR, 

7.13 AEROELASTIC DERIVATIVES 

In Sec. 5.12 there were introduced certain aerodynamic derivatives 
associated with the deformations of the airplane. These are of two kinds: 
those that appear in the rigid-body equations, and those that appear in the 
added equations of the elastic degrees of freedom. These are illustrated in 
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C.G. of deformed 

Y 

FIG. 7.22 Symmetrical wing bending. 

this section by consideration of the hypothetical vibration mode shown in 
Fig. 7.22. In this mode it is assumed that the fuselage and tail are rigid, and 
have a motion of vertical translation only. The flexibility is all in the wing, 
and it bends without twisting. The functions describing the mode (5.12, l )  are 
therefore : 

x l = x - x o = 0  

y l = y - y o = O  (7.13, l )  

z l = z - - 2  0 = h(y)z ,  

For the generalized coordinate, we have used the wing-tip deflection zT. 
h(y )  is then a normalized function describing the wing bending mode. 

In view of the fact that the elastic degrees of freedom are only important 
in relation to stability and control when their frequencies are relatively low, 
approaching those of the rigid-body modes, then it is reasonable to use the 
same approximation for the aerodynamic forces as is used in calculating 
stability derivatives. That is, if quasisteady flow theory is adequate for the 
aerodynamic forces associated with the rigid-body motions, then we may 
use the same theory for the elastic motions. 

In  the example chosen, we assume that the only significant forces are 
those on the wing and tail, and that these are to be computed from quasisteady 
flow theory. In  the light of these assumptions, some of the representative 
derivatives of both types are discussed below. As a preliminary, the forces 
induced on the wing and tail by the elastic motion are treated first. 

FORCES ON THE WING 

The vertical velocity of the wing section distant y  from the center line is 

i = h ( y ) i ,  (7.13,2) 
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and the corresponding change in wing angle of attack is 

A " ( ~ )  = h ( ~ ) i T I v  (7.13,3) 
This angle-of-attack distribution can be used with any applicable steady-flow 
wing theory to calculate the incremental local section lift. (It will of course 
be proportional to iT/v.) Let it be denoted in coefficient form by Cb(y)iT/V, 
and the corresponding increment in wing total lift coefficient by CiwiT /V .  
C ~ ( Y )  and C i w  are thus the values corresponding to unit value of the non- 
dimensional quantity iT/ V. 

FORCE O N  THE TAIL 

The tail experiences a downward velocity h(0)iT,  and also, because of the 
altered wing lift distribution, a downwash change (ac/aiT)iT.  Hence the 
net change in tail angle of attack is 

This produces an increment in the tail lift coefficient of amount 

THE DERIVATIVE LiT 
This derivative describes the contribution of wing bending velocity to the 

lift acting on the airplane. A suitable nondimensional form is aC,/a(iT/V) : 

and hence 2!2L = C + a 
a(iTlv) ISt 

THE DERIVATIVE Aria 
This derivative (see 5.12,12) represents the contribution to the generalized 

force in the bending degree of freedom, associated with a change in the 
angle of attack of the airplane. A suitable nondimensional form is obtained 

Then the appropriate nondimensional derivative is CSa. 
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Let the wing lift distribution due to a perturbation u in the angle of attack 
(constant across the span) be given by Cza(y)a. Then in a virtual displacement 
in the wing bending mode 6zT, the work done by this wing loading is 

where c(y) is the local wing chord. The corresponding contribution to fl is 

and to CFa is 

The tail also contributes to this derivative. For the tail lift associated with 
u is  

and the work done by this force during the virtual displacement is 

Therefore the contribution to C, is 

and to CFa is 

The total value of CFa is then the sum of (7.13,7 and 8.) 

THE DERlVATlVE b , ,  (SEE 5.12,12) 

This derivative identifies the contribution of i, to the generalized aero- 
dynamic force in the distortion degree of freedom. We have defined the 
associated wing load distribution above by the local lift coefficient Cl(y)iT/ V. 
As in the case of the derivative A,. above, the work done by this loading is 
calculated, with the result that the wing contributes 
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Summary-Longitudinal Derivatives 

a N. A. means no convenient formula available. 
"Neg." means usually negligible. 
The asterisk means contribution of the tail only. 
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Likewise, the contribution of the tail is calculated here as for A,,, and is 
found to be 

The total value of aC,/a(i,/V) is then the sum of (7.13,9 and 10.). 

7.14 SUMMARY OF THE FORMULAE 

The formulae that are frequently wanted for reference are collected in 
Table 7.1. Where an entry in the table shows only a tail contribution, it is 
not implied that wing and body effects are not important, but only that no 
convenient formula is available. 



Lateral aerodynamic 
characteristics 

C H A P T E R  8 

In  the preceding two chapters we have discussed the aerodynamic character- 
istics of symmetrical configurations flying with the velocity vector in the 
plane of symmetry. As a result the only nonzero motion variables were V ,  a, 
2nd q, and the only nonzero forces and moments were T, D, L, and M. We 
now turn to the cases in which the velocity vector is not in the plane of 
symmetry, and in which rolling and yawing motions (&p,  r )  are present. 
The associated force and moment coefficients are Cc or C,, C,, and C, (see 
Table 5.1). 

One of the simplifying aspects of the longitudinal motion is that the 
rotation is about one axis only (the y axis), and hence the rotational stiffness 
about that axis is a very important criterion for the dynamic behavior. 
This simplicity is lost when we go to the lateral motions, for then the rotation 
takes place about two axes (x and 2). The moments associated with these 
rotations are cross-coupled, i.e. roll rotation p produces yawing moments C, 
as well as rolling moment C,, and yaw displacements ,3 and rate r both 
produce rolling and yawing moments. Furthermore, the roll and yaw 
controls are also often cross-coupled-deflection of the ailerons can produce 
significant yawing moments, and deflection of the rudder can produce 
significant rolling moments. 

Another important difference between the two cases is that in "normal" 
flight-i.e. steady rectilinear symmetric motion, all the lateral motion and 
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force variables are zero. Hence there is no fundamemfa1 trimming problem- 
the ailerons and rudder would be nominally undeflected. In actuality of 
course, these controls do have a secondary trimming function whenever the 
vehicle has either geometric or inertial asymmetries--e.g. one engine off, or 
multiple propellers all rotating the same way. Because the gravity vector 
in normal flight also lies in the plane of symmetry, the C.G. position is not a 
dominant parameter for the lateral characteristics as it is for the longitudinal. 
Thus the C.G. limits, as discussed in Sec. 7.6 are governed by considerations 
deriving from the longitudinal characteristics. 

8.1 YAW STIFFNESS (WEATHERCOCK STABILITY) 

By exactly the same argument as used for pitch stiffness (Sec. 6.2), we 
conclude that flight vehicles should have positive yaw stiffness, i.e. (see Fig. 
8.1) aC,/ag > 0. For then a perturbation in will produce a restoring 
moment N that tends to keep the velocity vector in the plane of symmetry. 

FIG. 8.1 Sideslip angle and yawing moment. 
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FIQ. 8.2 Vertical-tail sign conventions. 

CnB is found from wind-tunnel measurements of the yawing moment, or 

when these are not available, can be estimated by synthesising the contri- 
butions of the various components of the vehicle. The principal contributions 
are those of the body and the tail. By contrast with C,,, the wing makes a 
relatively small contribution to C 

nP' 
In Fig. 8.2 are shown the relevant geometry and the lift force L, acting 

on the vertical tail surface. If the surface were alone in an airstream, the 
velocity vector V F  would be that of the free stream, so that (cf. Fig. 8.1) aF 
would be equal to -/?. When installed on an airplane, however, changes in 
both magnitude and direction of the local flow at the tail take place. These 
changes may be caused by the propellor slipstream, and by the wing and 
fuselage when the airplane is yawed. The angular deflection is allowed for by 
introducing the sidewash angle o, analogous to the downwash angle e. o is 
positive when i t  corresponds to  a flow in the y direction: i.e. when it  tends to  
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increase a,. Thus the angle of attack is 

and in the linear case the lift coefficient of the vertical-tail surface is 

C L ~  = a d - B  + 0) + (8.1,2) 
The lift is then 

Just as with the horizontal tail, any difference between V ,  and V is absorbed 
into the coefficients a ,  and a,. The yawing moment is 

whence 

The ratio S,l,/Sb is analogous to the horizontal-tail volume ratio, and is 
therefore called the vertical-tail volume ratio, denoted here by V V .  Equation 
(8.1,4) then reads 

and the corresponding contribution to the weathercock stability is 

The Sidewash Factor aa/ap .  Generally speaking the sidewash is difficult 
to  estimate with engineering precision. Suitable wind-tunnel tests are required 
for this purpose. The contribution from the fuselage arises through its 
behavior as a lifting body when yawed. Associated with the side force that 
develops is a vortex wake which induces a lateral-flow field at the tail. The 
sidewash from the propeller is associated with the side force which acts 
upon it  when yawed, and may be estimated by the method of ref. 7.3, 
previously cited in Sec. 7.3. The contribution from the wing is associated 
with the asymmetric structure of the flow that de~elops when the airplane 
is yawed. This phenomenon is especially pronounced with low-aspect-ratio 
swept wings. It is illustrated in Pig. 8.3. 

The Velocity Ratio V, /V.  When the vertical tail is not in a propeller 
slipstream, V, /V is unity. When it  is in a slipstream, the effective velocity 
increment may be dealt with as for a horizontal tail (see Sec. 7.3). 



296 Dynamics of atmospheric flight 

FIG. 8.3 Vortex wake of yawed wing. 

Contr ibut ion o f  Propeller Normal  Force. The yawing moment produced 
by the normal force which acts on the yawed propeller is calculated in the 
same way as the pitching-moment increment dealt with in Sec. 7.3. The 
result is similar to (7.3,10) 

This is known as the propeller fin effect, and is negative, i.e. destabilizing, 
when the propeller is forward of the C.G., but is usually positive for pusher 
propellers. 

8.2 YAW CONTROL 

I n  most fight conditions i t  is desired to maintain the sideslip angle equal 
to  zero. If the airplane has positive weathercock stability, and is truly 
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symmetrical, then it will tend to fly in this condition. However, yawing 
moments may act upon the airplane as a result of unsymmetrical thrust 
(e.g. one engine inoperative). slipstream rotation, or the unsymmetrical flow 
field associated with turning flight. Under these circumstances, can be kept 
zero only by the application of a control moment. The control that provides 
this is the rudder. Another condition requiring the use of the rudder is the 
steady side-slip, a maneuver sometimes used, particularly with light aircraft, 
to increase the drag and hence the glide path angle. From (8.1,2 and 5), the 
rate of change of yawing moment with rudder deflection is given by 

This derivative is sometimes called the "rudder power." It must be large 
enough to make it possible to maintain zero sideslip under the most extreme 
conditions of asymmetric thrust and turning flight. 

A second useful index of the rudder control is the steady sideslip angle 
which could be maintained by a given rudder angle if the iileron angle, roll 
rate, and yaw rate were all zero. The total yawing moment would then be 

For steady motion, C ,  = 0, and hence the desired ratio is 

The rudder hinge moment and control force are treated in a manner 
similar to that employed for the elevator. Let the rudder hinge-moment 
coefficient be given by 

GhT = b,aF + b2dT (8.2,4) 

The rudder pedal force will then be given by 

where G is the rudder system gearing. 
The effect of a free rudder on the yaw stiffness is found by setting ChT = 0 

in (8.2,4). Then the rudder floating angle is 
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The vertical-tail lift coefficient with rudder free is found from (8.1,2) to be 

The free control factor for the rudder is thus seen to be of the same form as 
that for the elevator (see Sec. 6.6) and to have a similar effect. 

8.3 ROLL STIFFNESS 

Consider a vehicle constrained, as on bearings in a wind tunnel, to one 
degree of freedom-rolling about the x axis. The forces and moments resulting 
from a fixed displacement 4 are fundamentally different in character from 
those associated with the rotations a and about the other two axes. In the 
first place if the x axis coincides with the velocity vector V, no aerodynamic 
Ghange whatsoever follows from the fixed rotation C$ (see Fig. 8.4). The 
aerodynamic field remains symmetrical with respect to the plane of symmetry, 
the resultant aerodynamic force remains in that plane, and no changes occur 
in any of the aerodynamic coefficients. Thus the roll stiffness Ctd is zero in 
that case. 

t 

I 1 W (weight) 

Fra. 8.4 Rolled airplane. 
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If the x axis does not coincide with V, then a second-order roll stiffness 
results through the medium of the derivative C,,. Let the angle of attack 
of the x axis be a, (Fig. 4.4), then the velocity vector when $ = 0 is 

(8.3,l) 

After rolling through angle $ about Ox, the velocity vector is (cf. Sec. 4.5) 

V, = Ll($)Vl = V sin a, sin $ (8.3,2) 

V sin a, cos $ 

(4.3.3) 

[ vcOsax I 
Thus the sideslip component is v = V sin a, sin $, and the sideslip angle is 

v 
@ = sin-' - = sin-' (sin a, sin ( 5 )  (8.33) v 

As a result of this positive @, and the usually negative C,, there is a restoring 
rolling moment C,,p i.e. 

AC, = c,, sin-' (sin a, sin $) (8.3,4a) 

For small a,, we get the approximate result 

AC, + C,, sin-1 (a, sin $) = C a sin $ " (8.3,4b) 

and if $ also is small, 
AC, 5 C1,ax$ 

The stiffness derivative for rolling about Ox is then from (8.3,4a) 

ac - = c, sin a, cos $ 

a$ P (1 - sin2 a, sin2 $fA 
or for a, << 1, 

or for a,, $ << 1 

Thus there is a roll stiffness that resists rolling if a, is >0, and would tend 
to keep the wings level. If rolling occurs about a wind axis, the stiffness is 
zero and the vehicle has no preferred roll angle. If a, < 0, then the stiffness 
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is negative and the vehicle would roll to the position + = 180°, a t  which 
point C, = 0 and C < 0. ze 

The above discuss~on applies to a vehicle constrained, as stated, to one 
degree of freedom. I t  should not be thought that the derivative C,+ so deduced 
should be introdzcced into the rolling moment equation (5.13,173)! The rolling 
moment we have discussed above arises solely from the aerodynamic effect 
of p, and as such is already included in the term Clap of the equation. The 
usefulness of the above point of view is that it helps one to understand the 
behavior of free motions that consist principally of rolling about an axis in 
the plane of symmetry. 

Having shown above that airplanes have no fist-order aerodynamic roll 
stiffness, it is worthwhile to digress a t  this point to show why they neverthe- 
less have an inherent tendency to fly with wings level. They do so because of 
a secondary effect, involving gravity and C When rolled to an angle 4, 9. 
there is a weight component mg sin $ in the y direction (Fig. 8.4). This 
induces a sideslip velocity to the right, with consequent fl > 0, and a rolling 
moment C p that tends to bring the wings level. The rolling and yawing 
motions that result from such an initial condition are however strongly 
coupled, so no significant conclusions can be drawn about the behavior 
except by a dynamic analysis (see Chapter 9). 

8.4 ROLLING CONTROL 

The angle of bank of the airplane is controlled by the ailerons. The primary 
function of these controls is to produce a rolling moment, although they 
frequently introduce a yawing moment as well. The effectiveness of the 
ailerons in producing rolling and yawing moments is described by the two 
control derivatives aC,/as, and aC,/as,. The aileron angle 6, is defined as the 
mean value of the angular displacements of the two ailerons. It is positive 
when the right aileron movement is downward (see Fig. 8.5). The derivative 
aC,/as, is normally negative, right aileron down producing a roll to the left. 

For simple flap-type ailerons, the increase in lift on the right side and the 
decrease on the left side produce a drag differential which gives a positive 
(nose-right) yawing moment. Since the normal reason for moving the right 
aileron down is to initiate a turn to the left, then the yawing moment is seen 
to be in just the wrong direction. It is therefore called aileron adverse yaw. 
On high-aspect-ratio airplanes this tendency may introduce decided diffi- 
culties in lateral control. Means for avoiding this particular difficulty include 
the use of spoilers and Frise ailerons. Spoilers are illustrated in Fig. 8.6. 
They achieve the desired result by reducing the lift and increasing the drag 
on the side where the spoiler is raised. Thus the rolling and yawing moments 
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FIG. 8.5 Aileron angle. 

developed are mutually complementary with respect to turning. Frise 
ailerons (Fig. 6.23) diminish the adverse yaw or eliminate it  entirely by 
increasing the drag on the side of the upgoing aileron. This is achieved by the 
shaping of the aileron nose and the choice of hinge location. When deflected 
upward, the gap between the control surface and the wing is increased, and 
the relatively sharp nose protrudes into the stream. Both these geometrical 
factors produce a drag increase. 

Section through spoiler 

FIG. 8.6 Spoilers. 
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The deflection of the ailerons leads to still additional yawing moments 
once the airplane acquires a roll rate. These are caused by the altered flow 
about the wing and tail. These effects are discussed in Sec. 8.6 (C,,), and 
are illustrated in Figs. 8.12 and 8.15. 

A h a 1  remark about aileron controls is in order. They are functionally 
distinct from the other two controls in that they are rate controls. If the 
airplane is restricted only to rotation about the wind axis, then the appli- 
cation of a constant aileron angle results in a steady rate of roll. The elevator 
and rudder, on the other hand, are displacement controls. When the airplane 
is constrained to the relevant single-axis degree of freedom, a constant 
deflection of these controls produces a constant angular displacement of the 
airplane. It appears that both rate and displacement controls are acceptable 
to pilots. 

AILERON REVERSAL 

There is an important aeroelastic effect on roll control by ailerons that is 
significant on most conventional airplanes at both subsonic and supersonic 
speeds. This results from the elastic distortion of the wing structure associated 
with the aerodynamic load increment produced by the control. As illustrated 
in Fig. 6.22, the incremental load caused by deflecting a control flap at 
subsonic speeds has a centroid somewhere near the middle of the wing chord. 
At supersonic speeds the control load acts mainly on the deflected surface 
itself, and hence has its centroid even farther to the rear. If this load centroid 
is behind the elastic axis of the wing structure, then a nose-down twist of the 
main wing surface results. The reduction of angle of attack corresponding 
to 6 > 0 causes a reduction in lift on the surface as compared with the rigid 
case, and a consequent reduction in the control effectiveness. The form of 
the variation of CzsB with ipV2 for example can be seen by considering an 
idealized model of the phenomenon. Let the aerodynamic torsional moment 
resulting from equal deflection of the two ailerons be T ( y )  cc +pV2da and 
let T ( y )  be antisymmetric, T ( y )  = -T( -y) .  The twist distribution corre- 
sponding to T ( y )  is O(y), also antisymmetric, such that 0(y )  is proportional 
to T at any reference station, and hence proportional to 3pV26a. Finally, 
the antisymmetric twist causes an antisymmetric increment in the lift 
distribution, giving a proportional rolling moment increment AC, = k i p  V2da. 
The total rolling moment due to aileron deflection is then 

and the control effectiveness is 
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As noted above, (C16,)rlgid is negative, and k is positive if the centroid of the 
aileron-induced lift is aft of the wing elastic axis, the common case. Hence 
I C,,.J diminishes with increasing speed, and vanishes a t  some speed V R ,  the 
aileron reversal speed. Hence 

O = (Ci6a)rigid + k i ~ V R 2  

or k = - (C16,)rigid 1 B p V 2  (8.4,3) 

Substitution of (8.4,3) into (8.4,2) yields 

This result, of course, applies strictly only if the basic aerodynamics are not 
Mach-number dependent, i.e. so long as V R  is at a value of M  appreciably 
below 1.0. Otherwise k and (C, )rigid are both functions of M, and the 

6, 
equation corresponding to (8.4,4) is 

where MR is the reversal Mach number. 
It is evident from (8.4,4) that the torsional stiffness of the wing has to be 

great enough to keep V R  appreciably higher than the maximum flight speed 
if unacceptable loss of aileron control is to be avoided. 

8.5 THE p DERIVATIVES (C,,, C,,, C,,, C,,,) 

The sideslip derivatives are all obtainable from static wind-tunnel tests 
on yawed models. Generally speaking, estimation methods are not very 
reliable, and testing is needed for accurate results. 

THE DERIVATIVE C,, 

We shall assume that the thrust vector remains in the xz plane, so that it 
does not contribute to the Y force. Then in terms of Cc and CD (see Fig. 4.5) 
we have 

C, = -Cc cos ,!I - CD sin /3 

cos ,!I - CD cos ,!I - 
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where p,, the equilibrium value, is zero. Hence 

The main contributions to Cc usually come from the body and the tail, the 
wing contribution being minor. That from the tail is readily estimated. From 
(8.1,3) we have 

and 

whence (C ) . S~ a C ~ F  
*g tall a p  

The CD term of (8.5,l) would often be small compared to the tail contribution 
(8.5,2), and the whole derivative Cgp often has negligible effect on the vehicle 
dynamics. 

THE DERIVATIVE C,, 

By contrast with CgB, the derivative CZP, known as the dihedral effect, is of 
paramount importance. We have already noted its relation to roll stiffness 
and to the tendency of airplanes to fly with wings level. The primary con- 
tribution to CZP is from the wing-its dihedral angle, aspect ratio, and sweep 
all being important parameters. 

The effect of wing dihedral is illustrated in Fig. 8.7. With the coordinate 
system shown, the normal velocity component V ,  on the right wing panel 
(R) is, for small dihedral angle I?, 

V ,  = w cos F + v sin I' 
= w + ~r 

and that on the other panel is w - vr. The terms &vr/V = &fir represent 
opposite changes in the angle of attack of the two panels resulting from 
sideslip. The "upwind" panel has its angle of attack and therefore its lift 
increased, and vice versa. The result is a rolling moment approximately 
linear in both fi and r, and hence a fixed value of CZ8 for a given r. This part 

of CZB is essentially independent of wing angle of attack so long as the flow 
remains attached. 



Wing-chord plane 

2 

Fra. 8.7 Dihedral effect. 

V,  = normal velocity of panel R 

= w c o s I ' + v s i n I ' = j = w  +vI'  

v r  vpr .'. Aa of R due to dihedral = - = - = pr 
V V 

Fro. 8.8 Yawed lifting wing. 
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Even in the absence of dihedral, a flat lifting wing panel has a C,, pro- 
portional to CL. Consider the case of Fig. 8.8. The vertical induced velocity 
(downwash) of the vortex wake is greater a t  L than at R simply by virtue 
of the geometry of the wake. Hence the local wing angle of attack and lift 
are less at L than at R, and a negative C, results. Since this effect depends, 
essentially linearly, on the strength of the vortex wake, which is itself 
proportional to the wing CL, then the result is AC,, cc CL. 

INFLUENCE OF FUSELAGE ON C,, 

The flow field of the body interacts with the wing in such a way as to 
modify its dihedral effect. To illustrate this, consider a long cylindrical body, 
of circular cross section, yawed with respect to the main stream. Consider 
only the cross-flow component of the stream, of magnitude VP, and the flow 
pattern which it produces about the body. This is illustrated in Fig. 8.9. It 

FIG. 8.9 Influence of body on CZB. 

is clearly seen that the body induces vertical velocities which, when combined 
with the mainstream velocity, alter the local angle of attack of the wing. 
When the wing is at the top of the body (high-wing), then the angle-of-attack 
distribution is such as to produce a negative rolling moment: i.e. the dehedral 
effect is enhanced. Conversely, when the airplane has a low wing, the dihedral 
effect is diminished by the fuselage interference. The magnitude of the effect 
is dependent upon the fuselage length ahead of the wing, its cross-section 
shape, and the planform and location of the wing. Generally, this explains 
why high-wing airplanes usually have less wing dihedral than low-wing 
airplanes. 

INFLUENCE OF SWEEP ON C,, 

Wing sweep is a major parameter affecting CIS. Consider the swept yawed 
wing illustrated in Pig. 8.10. According to simple sweep theory it is the velocity 
8, normal to a wing reference line (t chord line for subsonic, 1.e. for super- 
sonic) that determines the lift. It follows obviously that the lift is greater 
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FIG. 8.10 Dihedral effect of a, swept wing. 

on the right half of the wing shown than on the left half, and hence that 
there is a negative rolling moment. The rolling moment would be expected 
for small fl to be proportional to 

C~[(Vn')Figl,t - (vn2),e,tI = ~LV~[COS* (A - fl) - cos2 (A + fl)I 
= 2CLfl V* sin 2A 

The proportionality with CL and fl is correct, but the sin 2A factor is not a 
good approximation to the variation with A. The result is a Cz8 o~ CL, that 
can be calculated by the methods of linear wing theory. 

INFLUENCE OF FIN ON C,, 

The sideslipping airplane gives rise to a side force on the vertical tail as 
explained in Sec. 8.1. When the aerodynamic center of the vertical surface 
is appreciably offset from the rolling axis (Fig. 8.11) then this force may 
produce a significant rolling moment. From (8.1,2 and 3) with 6, = 0 this 

v-+ 
C.G. 

FIG. 8.11 Dihedral effect of the vertical tail. 
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moment is found to be 

whence 

and 

THE DERIVATIVE C,, 

This is the yaw stiffness derivative, already treated in detail in Sec. 8.1. 

THE DERIVATIVE ChrP 

This derivative gives the rudder hinge moment due to sideslip. I t  is 
analogous to the elevator hinge moment due to angle of attack. It is given 

where C,, is the appropriate coefficient-see (6.5,l). By using (8.1,1) we 
aF 

8.6 THE p DERIVATIVES (Cup, CZB, CnB, Clha,, ChrB) 

When an airplane rolls with angular velocity p about its z axis in the 
reference state (the flight direction for wind axes), its motion isinstantaneously 
like that of a screw. This motion affects the airflow (local angle of attack) at  all 
stations of the wing and tail surfaces. This is illustrated in Fig. 8.12 for two 
points: a wing tip and the fin tip. It should be noted that the non-dimensional 
rate of roll, #J = pbl2V is, for small p, the angle (in radians) of the helix 
traced by the wing tip. These angle-of-attack changes bring about alterations 
in the aerodynamic load distribution over the surfaces, and thereby introduce 
perturbations in the forces and moments. The change in the wing load 
distribution also causes a modification to the trailing vortex sheet. The 
vorticity distribution in it is no longer symmetrical about the x axis, and a 
sidewasli (positive, i.e. to the right) is induced a t  a vertical tail conventionally 
placed. This further modifies the angle-of-attack distribution on the vertical- 
tail surface. This sidewash due to rolling is characterized by the derivative 
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Lift distribution 

X 

FIG. 8.12 Angle of attack changes due to p. 

ao/a$. It has been studied theoretically and experimentally by Michael 
(ref. 8.1), who has shown its importance in relation to correct estimation of 
the tail contributions to the rolling derivatives. Finally, the helical motion 
of the wing produces a trailing vortex sheet which is not flat, but helical. 
For the small rates of roll admissible in a linear theory, this effect may be 
neglected with respect to both wing and tail forces. 

THE DERIVATIVE C,, 

The side force due to rolling is often negligible. When it  is not, the con- 
tributions that need to be considered are those from the wing? and from the 
vertical tail. The vertical-tail effect may be estimated in the light of its 
angle-of-attack change (Fig. 8.12) as follows. Let the mean change in u, 
(Fig. 8.2) due to the rolling velocity be 

where z, is an appropriate mean height of the fin. Introducing the 

t For the effect of the wing at  low speeds, see ref. (8.4). 
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nondimensional rate of roll, we may rewrite this as 

The incremental side-force coefficient on the fin is obtained from hap,  

where aF is the lift-curve slope of the vertical tail. The incremental side 
force on the airplane is then given by 

whence 

THE DERIVATIVE C,, 

C,, is known as the damping-in-roll derivative. It expresses the resistance 
of the airplane to rolling. Except in unusual circumstances, only the wing 
contributes significantly to this derivative. As can be seen from Fig. 8.12, the 
angle of attack due t o p  varies linearly across the span, from the value pb/2 V 
a t  the right wing tip to -pb/2V at the left tip. This antisymmetric cr dis- 
tribution produces an antisymmetric increment in the lift distribution as 
shown in Fig. 8.13. In the linear range this is superimposed on the symmetric 

FIG. 8.13 Spanwise lift distribution due to rolling. 
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lift distribution associated with the wing angle of attack in undisturbed 
flight. The large rolling moment L produced by this lift distribution is 
proportional to the tip angle of attack $, and Czu is a negative constant, so 
long as the local angle of attack remains below the local stalling angle. 

If the wing angle of attack at the center line, orw(0), is large, then the 
incremental value due to p may take some sections of the wing beyond the 
stalling angle, as shown in Fig. 8.14. [Actually, for finite span wings, there is 

Net section angle of attack 

F I ~ .  8.14 Reduction of GI, due to wing stall. 

an additional induced angle of attack distribution cri(y) due to the vortex 
wake that modifies the net sectional value still further. We neglect this 
correction here in the interest of making the main point.] When this happens 
ICz,$l is reduced in magnitude from the linear value and if aw(0) is large 
enough, will even change sign. When this happens, the wing will autorotate, 
the main characteristic of spinning fight. 

THE DERIVATIVE Cnp 

The yawing moment produced by the rolling motion is one of the so called 
cross derivatives. It is the existence of these cross derivatives that causes the 
rolling and yawing motions to be so closely coupled. The wing and tail both 
contribute to C,,. 

The wing contribution is in two parts. The first comes from the change in 
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profile drag associated with the change in wing angle of attack. The wing cc 
is increased on the right-hand side and decreased on the left-hand side. 
These changes will normally be accompanied by an increase in profile drag 
on the right side, and a decrease on the left side, combining to produce a 
positive (nose-right) yawing moment. The second wing effect is associated 
with the fore-and-aft inclination of the lift vector which is caused by the 
rolling in subsonic flight and in supersonic flight when the leading edge is 
subsonic. I ts  existence depends on the leading edge suction. The physical 
situation is illustrated in Fig. 8.15. The directions of motion of two typical 

Y' 

FIG. 8.15 Inclination of CL vector due to rolling. 

wing elements are shown inclined by the angles *0 = p y / P  from the 
direction of the vector 8. Since the local lift is perpendicular to the local 
relative wind, then the lift vector on the right half of the wing is inclined 
forward, and that on the left half backward. The result is a negative yawing 
couple, proportional to the product CL$. If the wing leading edges are 
supersonic, then the leading-edge suction is not present, and the local force 
lremains normal to the surface. The increased angle of attack on the right 
side causes an increase in this normal force there, while the opposite happens 
on the left side. The result is a positive yawing couple proportional to $. 

The tail contribution to CfiD is easily found from the tail side force given 
previously (8.6,2). The incremental C ,  is given by 
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where I F  is the distance shown in Fig. 8.2. Therefore 

and 

where Vv is the vertical-tail volume ratio. 

THE DERIVATIVE Chap 

This derivative gives the change of aileron hinge moment due to rolling. 
It occurs because of the change in wing angle of attack at  the ailerons, and 
because Cha of the ailerons is usually nonzero. Let ya be the spanwise co- 
ordinate of the right hand mid-aileron section. Then the approximate change 
in angle of attack at the right hand aileron is 

and 

Therefore ch, = - 2 ~ a  c h ,  
b 

( 8 . V )  

THE DERIVATIVE C,, 

The change in vertical-tail angle of attack brought about by p produces a 
change in the rudder hinge moment. This is given by 

Therefore 

When ChTaP is negative, as for a simple flap control, then a positive roll 
produces a positive rudder hinge moment. 

8.7 THE r DERIVATIVES (C,,, C,,, Cn,, Ch,,, Ch,,) 

When an airplane has a rate of yaw r superimposed on the forward motion 
V, its velocity field is altered significantly. This is illustrated for the wing 
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and vertical tail in Fig. 8.16. The situation on the wing is clearly very 
complicated when it has much sweepback. The main feature however, is 
that the velocity of the Q chord line normal to itself is increased by the 
yawing on the left-hand side, and decreased on the right side. The aero- 
dynamic forces at each section (lift, drag, moment) are therefore increased 
on the left-hand side, and decreased on the right-hand side. As in the case 

..+ 
FIG. 8.16 Velocity field due to yawing. A B  = velocity vector due to rate of yaw r. 

of the rolling wing, the unsymmetrical lift distribution leads to an unsym- 
metrical trailing vortex sheet, and hence a sidewash at the tail. The incre- 
mental tail angle of attack is then 
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THE DERIVATIVE C,, 

The only contribution to C,, that is normally important is that of the tail. 
From the angle-of-attack change we find the incremental C, to be 

Whence 

THE DERIVATIVE CcT 

This is another important cross derivative; the rolling moment due to 
yawing. The increase in lift on the left wing, and the decrease on the right 
wing combine to  produce a positive rolling moment proportional to the 
original lift coefficient CL. Hence this derivative is largest at  low speed. 
Aspect ratio, taper ratio, and sweepback are all important parameters. 

When the vertical tail is large, its contribution may be significant. A 
formula for i t  can be derived in the same way as for the previous tail 
contributions, with the result 

THE DERIVATIVE C ,  

Cnr is the damping-in-yaw derivative, and is always negative. The body 
adds a negligible amount to Cnp kxcept when it  is very large. The important 
contributions for airplanes are those of the wing and tail. The increases in 
both the profile and induced drag on the left wing and the decreases on the 
right wing give a negative yawing moment and hence a resistance to the 
motion. The magnitude of the effect depends on the aspect ratio, taper ratio, 
and sweepback. For extremely large sweepback, of the order of 60°, the 
yawing moment associated with the induced drag may be positive: i.e. 
produce a reduction in the damping. 



3 16 Dynamics of atmospheric JEight 

The side force on the tail also provides a negative yawing moment. The 
calculation is similar to that for the preceding tail contributions, with the 
result 

Just as with Cmq, there is a damping-in-yaw provided by the propulsive 
jet on jet and rocket vehicles. The calculation of AC,. applies exactly to this 
case as well if M be replaced by N ,  and q by r .  The result is the same as 
(7.9,20 and 22),  i.e. 

AN, = --2mf@ 

and 

THE DERIVATIVE Char 

The change in aileron hinge moment due to yawing velocity is a consequence 
of the velocity differential between the right and left ailerons. Let the hinge- 
moment coefficient of the right-hand aileron, a t  zero aileron angle, be C,,,. 
Then the corresponding hinge moment, with no yawing, is Chao(p/2) V2S,ca. 
This hinge moment is normally balanced by that on the left aileron, so that 
no load is carried to the pilot's control. Now, when yawing is added, the mean 
forward velocity a t  the right-hand aileron is changed from V to (V  - ry,), 
so that the hinge moment is approximately ChaO(p/2)(V - ry,)2S,ca. To the 
f i s t  order in r ,  the incremental hinge moment is 

AH, = -c ha, VSaca 

On the left-hand side, the increment in H is equal to the above but opposite 
in sign, so that the two are additive with respect to the stick force, just as 
though the ailerons were deflected through a small positive angle. The 
coefficient of AH, is 

Since C,, is defined as the hinge moment on one aileron then 



Table 8.1 
Summary-Lateral Derivatives 

-%Vv I 

* 

Neg. 

Neg.C 

-‘hTUp (’ - $) 

CZ 

* a  

N.A.~  

N.A. 

SF =F a -- * S  b 

a * denotes a contribution from the tail only. 
b N.A. means no convenient formula available. 
C Neg. means usually negligible. 

* 

a , V v ( l -  $) 
a&(2?-$) 

-aFVv (2 + 2) (tail) 

N.A. 

cha 1 chr 

Chug I Neg. 
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THE DERIVATIVE Ch, 

The change in the vertical-tail angle of attack (8.7,l) induces a change in 
the rudder hinge moment. This is given by 

where ChVaF is the derivative, with respect to the vertical-tail angle of attack 

of the rudder hinge-moment coefficient. Hence 

8.8 SUMMARY OF THE FORMULAE 

Table 8.1 contains a summary of useful formulae used for estimation 
purposes. 



Stability of steady flight 

C H A P T E R  9 

The preceding chapters have provided the analytical and aerodynamic 
tools needed to analyze the dynamic behavior of flight vehicles. We now 
apply them to a consideration of the stability of small disturbances from 
steady flight. This is an extremely important property of aircraftfirst, 
because steady flight conditions make up most of the flight time of airplanes, 
and second, because the disturbances in this condition must be small for a 
satisfactory vehicle. If they were not it would be unacceptable for either 
commercial or military use. The required dynamic behavior is ensured by 
design-by making the small-disturbance properties of concern (the natural 
modes, Fig. 3.6) such that either human or automatic control can keep the 
disturbances that ensue from atmospheric motion, movement of passengers, 
etc., to an acceptably small level. Finally, as pointed out in Sec. 5.10, the 
small-disturbance model is actually valid for disturbance magnitudes that 
seem quite violent to human occupants. 

To study the stability of the linearlinvariant systems that result from the 
small-disturbance approximation, we need only the eigenvalues of the system. 
If the real parts are negative, the system is stable. More complete information 
about the characteristic modes is usually wanted, however, and is supplied 
by the eigenvectors. The complete solution for arbitrary initial conditions 
in the autonomous case follows directly from the eigenvalues and eigen- 
vectors-it is given by any of (3.3,9), (3.3,13), or (3.3,49). 
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For the most part, the equations of motion are too complicated, even when 
linearized and simplified as far as is reasonable, to arrive a t  analytical results 
of general validity. Hence the technique we use is to demonstrate repre- 
sentative behavior by numerical examples. From these, certain useful 
analytical approximations can be inferred. 

9.1 LONGITUDINAL MODES; FLAT-EARTH 
APPROXIMATION 

Many useful results and insights can be obtained using the flat-Earth 
approximation. As we showed in Chapter 5, this approximation is valid 
for a wide range of flight conditions. We begin with the longitudinal modes, 
for which the relevant small-disturbance equations in nondimensional form 
are (5.13,18 and 19). We shall consider first a subsonic transport airplane 
in a reference steady state of horizontal flight, (y, = 0) and initially neglect 
the z derivatives as well. This is an approximation that is almost universally 
made in dealing with the flight of airplanes at  subsonic speeds. I ts  significance 
is explored in Sec. 9.4. Thus the relevant equations are (5.13,19) with y, = 0. 

For this class of vehicle there is little error entailed by assuming that the 
inclination of the thrust vector, a,, is zero, and we make this assumption. 

Since we are concerned with stability of a steady state, i.e. with autono- 
mous behavior, all the elements of the control vector-the last column on 
the r.h.s. of (5.13,19)-are zero as well. We are left then with an autonomous 
linearlinvariant system with the matrix shown on the facing page. 

The general theory for such systems has been given in Sec. 3.3, where i t  
was pointed out that the central elements of the solutions for free motion 
are the eigenvalues and eigenvectors. To obtain the natural modes of a 
vehicle, subject to the approximations and restrictions implicit in (9.1,1), it 
then remains to assign numerical values to the elements of A and to calculate 
its eigenvalues and eigenvectors. 

Numerical Example. The following data pertain to a hypothetical jet 
transport airplane flying a t  high altitude. 

W = 100,000 1b S = 1667 ft2 WIS = 60 psf 

A = 7  E = 15.40 ft p, = .000889 (approx. 
30,000 ft altitude) 

V = 500 mph = 733 fps p = 272 f ,  = 7p 
CLe = Cwe = .25 CDe = .0188 t* = .0105 sec 



A =  

W 
c! 
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It is assumed that the thrust of the jet engines does not vary with speed, i.e. 
aT/aV = 0, and that there are no speed effects on the aerodynamic deri- 
vatives. The remaining data needed for (9.1,l) are given for this particular 
vehicle as (see Table 7.1) 

Using the above data, the coefficients of A were calculated, and the eigen- 
values and eigenvectors found by library subroutines? available for the 

A 

UTIAS IBM 1130 computer. Let the eigenvalues be 4 = a f iC where the 
denotes nondimensional values (note that the independent variable of the 
differential equations is i! = tlt*). The properties of interest are then, in real 
time : 

257 
Period, T = t* A 

0 

The results obtained are as follows: 

Mode 1 : 4 = -.3065 x -& .573 x i 
Mode 2: a = -.116l x 10-I & .I891 X lod1 i 

The corresponding periods and damping times are given in Table 9.1. We 
note that the phugoid mode is of long period (about 2 min) and lightly 
damped, whereas the short-period mode is quite rapid and very heavily 
damped. The characteristic transients of these two modes are shown in 
Fig. 9.1. 

3 Prepared by Dr. P. C. Hughes. It is perhaps indicative of the times that most of the 
digital computation needed for this and the following examples was performed, using 
these subroutines, by a high-school student, David Alexander Etkin. 



Table. 9.1 

Period Nhalf 

(sec) (cycles) 

Phugoida 
Short-period 3.48 .626 

a The phugoid mode was first described by Lanchester 
(ref. 1.1), who also named it. The name comes from tho Greek 
root for flee as in fugitive. Actually Lanchester wanted the 
root for fly. Appropriate or not, the word phugoid has become 
established in aeronautical jargon. 

FIG. 9.1 Characteristic transients. (a) Phugoid mode. (b) Short-period (pitching) mode. 



324 Dynamics of atmospheric fight 

EIGENVECTORS 

The eigenvectors corresponding to the above modes are given in the Table 
9.2. They are not normalized, being to an arbitrary scale. The first and third 
columns correspond to h > 0, the second and fourth to G < 0. 

Table 9.2 

Eigenmatrix [uij] 

Figure 9.2 is the Argand diagram of the vectors in columns 1 and 3. This 
is a very effective form of displaying modal characteristics. Since the actual 
magnitudes of eigenvectors are arbitrary, only the relative lengths of the 
vectors are shown, taking that of A0 = 1.0. The vectors shown can be 
imagined as rotating and shrinking (just as in Fig. 3.6e except that here we 
only have those with o positive); and their projections on the Re axis can 
be thought of as the real values of the indicated variables. 

The phugoid is seen to be a motion in which the speed and pitch angle 0 
are the main variables, the former leading the latter by roughly 90' in phase, 
while the angle of attack and the pitch rate remain virtually constant at  
their reference values. The flight-path angle Ay is related to A0 and Acc by 
(5.10,22), Ay = A0 - AN, so that in the phugoid Ay = A0, and the oscilla- 
tory flight-path angle lags the speed by about 90'. 

I n  the short-period mode, by contrast, there is negligible speed variation, 
while the angle of attack oscillates with an amplitude and phase not much 
different from that of A0. The difference vector Ay is also shown in the figure. 
This mode as well is one that proceeds essentially in two degrees of freedom, 
Acc and A0. 

Phugoid 

-227 x 10-I 
+.281 i 

.639 x 
-.629 ~ 1 O - ~ i  

-.115 
+.202 x 1 0 - ~ i  

.353 
+.I16 x 10-2i 

Short-Period 

-227 x 10-I 
-.281 i 

.639 x 
+.629 ~ l O - ~ i  

-.I15 x 1 0 - ~  
-.202 x 10-3i 

- 

.353 
-.I16 x 10-2i 

279  x 
+.I80 x 

.333 
+ .195 i  

-.455 x 10-2 
+.578 x 1OP2i 

.329 
+.383 x 10-li 

279  x 
-.I80 x 

.333 
-.I95 i 

-.455 x 10-2 
-.578 x 10-2i 

.329 
-.383 x 10-li 



G(n0t visible) 

\ 

BIG. 9.2 (a) Vector diagram of phugoid mode. ( b )  Vector diagram of short-period mode. 
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FLIGHT PATHS IN THE CHARACTERISTIC MODES 

Additional insight into the modes is gained by studying the flight path. 
With the atmosphere a t  rest, the differential equations for the position of 
the C.G. in FE are given by (5.13,19), with ye = 0, i.e. 

DZE= 1 + A $  
DkE = -(A0 - Au) 

In  a characteristic oscillatory mode with eigenvalues 1, A* the variations of 
AP, Ad, and Acr are [cf. (3.3,30)] 

where the constants u,. are the components of the eigenvector corresponding 
to A. For the previous numerical example, they are the complex numbers 
given in Table 9.2 with j = 1 for the phugoid and j = 3 for the short-period 
mode. After substituting (9.1,3) in (9.1,2) and integrating we get 

= 2 + 2eat Re eig + const 
[ A  I 

2, = 2eAt Re U 2 j  - U 4 j  i&i [ e ] + const 

where Re denotes the real part of the complex number in the square brackets. 
The dimensional coordinates are obtained by using the additional relations 

For the numerical data of the above example (9.1,4) and (9.1,5) have been 
used to calculate the flight paths in the two modes, plotted in Fig. 9.3. The 
magnitudes of the eigenvectors were chosen so that Om,, is approximately 4O 
in the phugoid mode, and 10' in the short-period mode. t = 0 corresponds 
to the configuration of variables in Fig. 9.2, and the arbitrary constants of 
(9.1,4) are zero. The latter choice makes the initial point of the flight paths 
differ from the origin, but they both approach the xE axis as t -+ co. Figure 
9.3a shows that the phugoid is an undulating flight of very long wavelength. 



FIG. 9.3 (a) Phugoid flight path (fixed reference frame). (b)  Phugoid fight path 
(moving reference frame). (c) Short-period flight path. 
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Since Au = 0, the vehicle "flies like an arrow," i.e. has its x axis approxi- 
mately tangent to the trajectory. The mode diagram, Fig. 9 . 2 ~  shows that 
the speed leads the pitch angle by about 90°, from which we can infer that 
V is largest a t  the bottom of the wave and least a t  the top. This variation 
in speed results in different distances being traversed during the upper and 
lower halves of the cycle, as shown in Fig. 9 . 3 ~ .  For larger amplitude oscil- 
lations, this lack of symmetry in the oscillation becomes much more pro- 
nounced (although the linear theory then fails to describe i t  accurately) until 
ultimately the upper part becomes first a cusp and then a loop (see Miele, 
ref. 1.7, p. 273). The motion (see Sec. 9.2) is approximately one of constant 
total energy, the rising and falling corresponding to an exchange between 
kinetic and potential energy. Figure 9.3b shows the phugoid motion relative 
to axes moving a t  the reference speed V,. This is the relative path that would 
be seen by an observer flying alongside a t  speed Ve. 

Figure 9.312 shows the path for the short-period mode. The disturbance is 
so rapidly damped that the transient has virtually disappeared within 
1000 f t  of flight, even though the initial Au and A0 were very large. The 
deviation of the path from a straight line is small, the principal feature of 
the motion being the rapid rotation in pitch. 

9.2 APPROXIMATE EQUATIONS FOR THE 
LONGITU DlNAL MODES 

I t  is frequently useful and desirable to have approximate analytical 
expressions for the periods and dampings of the characteristic modes. These 
are convenient for assessing the influence of the main flight and vehicle 
parameters that affect the modes, and are especially useful when con- 
ventional methods of servomechanism analysis are applied to automatic 
control systems (ref. 9.4). There are two approaches generally used to arrive 
a t  these approximations. One is to write out a literal expression for the 
characteristic equation and, by studying the order of magnitude of the 
terms in it, to  arrive a t  approximate linear or quadratic factors. For example, 
if the characteristic equation 

is known to have a "small" real root, an approximation to i t  may be obtained 
by neglecting all the higher powers of s, i.e. 

Or if there is a "large" complex root, i t  may be approximated by keeping 
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only the first three terms, i.e. 

  his method is frequently useful, and sometimes the only reasonable way 
to get an approximation. 

The second method, which has the advantage of providing more physical 
insight, proceeds from a foreknowledge of the modal characteristics to arrive 
a t  approximate system equations of lower order than the exact ones. For 
the longitudinal modes we use the second method (see below), and for the 
lateral modes (see Sec. 9.6,l) both methods are needed. 

It should be noted that no simple analytical approximations can be relied 
on to give accurate results under all circumstances. Machine solutions of the 
exact matrix is the only certain way. The value of the approximations is 
indicated by examples in the following. 

To proceed now to the phugoid and short-period modes, we saw in Fig. 9.2 
that some state variables are negligibly small in each of the two modes. 
This fact suggests certain approximations to them based on reduced sets of 
equations of motion. These approximations, which are quite useful, are 
developed below. 

PHUGOID MODE 

Lanchester's (ref. 1.1) original solution for the phugoidused the assumptions 
that Aa = 0 and T - D = 0. It follows that there is no net aerodynamic 
force tangent to the flight path, and hence no work done on t6e vehicle 
except by gravity. The motion is then one of constant total energy, as 
suggested previously. This simplification makes it possible to treat the most 
general case with large disturbances in speed and flight-path angle (see 
Miele, ref. 1.7, p. 271 et seq.). Here we content ourselves with a treatment 
of only the corresponding small-disturbance case, for comparison with the 
exact numerical result given earlier. The energy condition is 

where the origin of FE is SO chosen that V  = Ve when zE = 0. With a 
constant, and in addition neglecting the effect of q on CL, then CL is constant 
a t  the value for steady horizontal flight, i.e. CL = CLe = CW,, and L = 
Cwe+p V 2 8  or, in view of (9.2,1), 

Thus the lift is seen to vary linearly with the height in such a manner as 
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always to drive the vehicle back to its reference height, the "spring constant" 
being 

k = CwepgS (9.2,3) 

The equation of motion in the vertical direction is clearly, when T - D = 0, 

W  - L  cos 8 = mzE 
or for smaU 8, 

W - L = m Z  E (9.2,4) 

On combining (9.2,2) and (9.2,4) we get 

which identifies a simple harmonic motion of period 

Since CWe = mg/+pV2S, this becomes 

a beautifully simple result, suggesting that the phugoid period depends only 
on the speed of flight, and not a t  all on the airplane or the altitude! For the 
above example, Ve = 733 fps, and (9.2,5) gives T = 101 sec, a value 12.2% 
different from the correct result, 115 sec. 

Although (9.2,5) is a very useful result for the period, the above theory 
cannot give any information a t  all about the damping, since thrust and drag 
were eliminated from consideration and it is precisely these that cause the 
amplitude of the oscillation to change. For a better approximation, we return 
to the equations of motion and incorporate a simplification suggested by 
Fig. 9.2a, i.e. ha = 0. Note that this is one of Lanchester's two assumptions. 
If we drop one variable, we must also drop one equation of motion. Now the 
zero ha may be considered to imply zero pitching moment of inertia, so 
that pitch equilibrium is always maintained throughout the motion, and 
this suggests that it is the pitching moment equation that should be dropped. 
With ha and the C ,  equation missing, (9.1,i) reduces to 
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For consistency with the previous numerical example, we neglect as well the 
derivatives CLv, CDp, CLq, CL4. Now the second of the three equations is an 
algebraic relation, i.e. with the preceding approximations 

After using (9.2,7) to eliminate $ from (9.2,6) we get the second-order system 

The characteristic equation is therefore 

The expansion gives the quadratic 

which has the roots 
j = A f  iG 

where 

and the damping ratio is 
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The "undamped" period is seen to be 

After eliminating CWe this reduces exactly to (9.2,5) so that the Lanchester 
result is recovered from (9.2,9) when CTv = 0. 

For the case of horizontal flight under consideration here, CTv depends 
only on the reference drag coefficient. and the type of propulsion system 
(see Sec. 7.8). For the example airplane in horizontal flight CTy = -2CDc, 
and in that case the damping coefficient is 

To this approximation, 5 will always vary inversely as the (LID) ratio, but 
for constant-power propulsion (instead of constant thrust) the constant is 

3124% (instead of 1 / f i ) .  
The accuracy of the approximation given by (9.2,9) is illustrated on Figs. 

9.4a, 9.8, and 9.16. 
Another approximation that gives better restllts for the period, but not 

necessarily for the damping, is one originally due to Bairstow (ref. 1.4) [the 
derivation is given by Ashkenas and McRuer (ref. 9.5)]. When converted 
to the notation of this work, it gives 

This also is compared with exact results in the figures that follow. 

SHORT-PERIOD MODE 

Figure 9.2b shows that the speed remains substantially constant in the 
short-period mode, and this suggests an approximation to the equations in 
which A v  = 0. Again, one equation must be dropped from the set, and the 
correct choice is the speed equation of motion. The reduced equations are 
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then, after neglecting the same derivatives as before, 

L 0 1 

The characteristic equation is then 

This expands to give the cubic equation 

s(s2 + CIS + c,) = 0 

where c0 = - 2@ma + Gma(CLa + CD.) 

21ufW 
(9.2,14) 

C1 = 
',('L~ + CDJ - 2/r(CmQ + om, )  

21ufW 
of which the second-degree factor is the approximation for the short-period 
roots. The zero root is of no interest. With the numerical values of the 
preceding example, the roots obtained from (9.2,14) are 

which are to be compared to the exact values 

-.I161 x 10-I f .I891 x PO-I i 

The errors are seen to be very small, less than &% in both the damping 
and the period. Equations (9.2,14) give a good approximation to the im- 
portant short-period oscillation over a wide range of flight and vehicle 
parameters. 

Because of the large influence of C.G. position on om=, a critical C.G. 
position is indicated by (9.2,14) when 

At this condition, c, vanishes, and the characteristic equation becomes 

s(s + c,) = 0 
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with roots f l  = 0, -c,. The latter corresponds to a damped exponential 
mode, and the zero root identifies one that is a constant state in the two 
variables Act and p^. This state, a longitudinal motion a t  constant speed, a 
and p^ is none other than the steady pull-up treated in Sec. 6.10. The critical 
C.G. position is found from (9.2,15) thus 

Comparison of (9.2,16) and (6.10,s) shows that h,,,, above would be exactly 
h, (the control-fixed maneuver point) if CDe were zero in the former and CLq 
zero in the latter. In  fact these equations both describe the same flight 
condition, and the differences between them are entirely due to differences in 
the detailed assumptions made in their derivations. Specifically, CLa was 
neglected in (9.2,12) and no component of the thrust normal to V was 
included in the derivation of (6.10,s). Had the assumptions been strictly 
compatible, the results would have been identical. 

The above analysis shows that the steady pull-up a t  constant speed can 
occur without motion of the controls a t  this C.G. position, and hence i t  is 
indeed the condition of zero control motion per g. We can further deduce 
that movement of the C.G. farther aft causes a reversal of sign of c, and 
hence corresponds to a "static instability" as in a mass-spring-damper with 
a "negative" spring. In this light the control-fixed maneuver point is seen 
as a criterion for the divergence of the short-period mode. 

9.3 GENERAL THEORY OF STATIC LONGITUDINAL 
STABILITY 

The concept of static stability was introduced in Chapter 3, where it was 
identified with the nature of the exponential characteristic modes (Figs. 3 . 6 ~  
and b ) .  In  Sec. 3.3 (p. 70) i t  was pointed out that the vanishing of the 
constant term in the characteristic equation of a linearlinvariant system 
provides a boundary between asymptotic stability and static instability. 
This is the criterion that we discuss in this section, and relate to the stability 
criteria presented earlier in Chapter 6. 

The characteristic equation [see (3.3,7)] is 

and clearly the constant term is found by setting s = 0, i.e. 
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The criterion for static stability is then 

The application of this criterion is in principle straightforward for any of 
the linearlinvariant systems (5.13,18 to 20) that describe the longitudinal 
and lateral motions. In  the interests of deriving a simple usable analytical 
result, however, we shall treat the special case represented by (9.1,1), in 
which the equilibrium flight path is horizontal, and x derivatives are neglected. 
When I --A1 is expanded we get 

Since the factor outside the square brackets is always positive (CLb could 

not be <-2p for any reasonable heavier-than-air vehicle) the stability 
criterion becomes 

+ C D ~ ) ~ , ~  - Cma(C," + 2%) > 0 (9.3,3) 

When comparing (9.3,3) with the static stability criteria discussed in Chapter 
6, a minor difference in basic assumptions must be noted. In  the preceding 
development, i t  was specifically assumed that the thrust vector rotates 
with the vehicle when u is changed. I n  the development leading to (6.4,24) 
by contrast, there is an implicit assumption that the thrust provides no 
component of force perpendicular to V [see (6.4,18)]. It is this difference 
that leads to the presence of CD8 in (9.3,3) whereas there is no corresponding 
term in the numerator of (6.4,24). Had the assumptions been the same, the 
expressions would be strictly compatible. In  any case, CDe is usually small 
compared to CLa, so that the difference is not important. We see that the 
justification for the statement made in Sec. 6.4, that the slope of the elevator 
trim curve (dd,,,,,/dp), is a criterion of static stability, is provided by (9.3,3). 
[Note that Cw = C, in (9.3,3).] 

Another stagility criterion referred to in Chapter 6 is the derivative 
dCm/dCL (6.3,21). It was pointed out there that this derivative can only be 
said to exist if enough constraints are imposed on the independent variables 
or, p,  a,, q, etc., on which C, and CL separately depend. Such a situation 
results if we postulate that the vehicle is in rectilinear motion (q = 0) a t  
constant elevator angle and throttle setting, with L = W, but with varying 
speed and angle of attack. Such a condition cannot, of course, actually occur 
in flight because the pitching moment could be zero a t  only one speed, but 
i t  can readily be simulated in a wind tunnel where the model is restrained 
by a balance. [The argument that follows is quite similar to that of (6.4,18) 
et  seq.] With the above stipulations, C, and CL reduce to functions of the 
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two variables p and a, and incremental changes from a reference state ( ), 
are given by 

dCL = CLa da + cLVd? 

dCm = Cma da + Cmv d? 
(9.3,4) 

The required derivative is then 

provided dp/da exists'. This is guaranteed by the remaining condition 
imposed, i.e. L = W (implying a~ -- 0).  For then we have 

from which we readily derive 

(CLa dct + CLv d P ) 4 p ~ : X  + CL,pVeX dV = 0 (9.343) 
From (9.3,6) 

(CLv + 2CLc) d+ + CLa dor = 0 

df i  -- - -  ' ~ a  

da Czv  + ~ Q L ,  

After substituting (9.3,7) into (9.3,5) and simplifying we get 

On comparing (9.3,8) with (9.3,3), again neglecting CDe therein for compatibil- 
ity of assumptions, and noting that Cwe = C,,, we see that the static stability 
criterion is 

provided that dCm/dCL is calculated with the constraints ha, = An = q = 0 
and L = W. [The quantity on the left side of (9.3,8) and (9.3,9) is sometimes 
referred to as speed stability in the USA, by contrast with "angle of attack" 
stability. In Great Britain, this term usually has a different meaning, as in 
See. 11.5.1 

On using the definition of h, given in (6.4,26) we find from (9.3,8) that 
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i.e. that it is proportional to the "stability margin," and when CLv < 2CL,, is 
equal to it. 

Finally, we must check on the significance of the "pitch stiffness" parameter 
Cma, to which great importance was attached in Chapter 6. We see from 

9.3,3 that when CLy and C,,, are zero, Cma < 0 does indeed provide an exact 

criterion for static stability. Even when CLv and Cmv are not zero, we shall 
see from the examples to follow that Cma < 0 is still a useful and significant 
criterion. 

9.4 EFFECT OF FLIGHT CONDITION ON THE 
LONGITUDINAL MODES OF A SUBSONIC JET 
TRANSPORT 

In  See. 9.1 we gave the representative characteristic modes of a hypo- 
thetical subsonic jet airplane for a single set of parameters. It is of consider- 
able interest to enquire into how these characteristics are affected by changes 
in the major flight variables-speed, altitude, angle of climb, and stability 
margin. It is also of interest to establish the nature of the approximation 
dp"/d$ = 0. Pn this section we present numerical results that illustrate the 
above features. 

9.4.1 EFFECT OF SPEED 

When the speed is changed in horizontal flight, the matrix (9.1,1) previously 
used is still applicable. All the assumptions made in Sec. 9.1 are retained-in 
particular, no Mach number effects are included-and hence the only 
quantities that vary are CL,, CDs, CTv, CDu, and t* .  The eigenvalues and 

eigenvectors of (9.1,1) have been calculated for a range of speeds, and the 
variations of the period and damping of the two modes are given in Fig. 9.4. 
The Lanchester approximation to the phugoid period (9.2,5) is shown for 
comparison, as well as approximations (9.2,9), (9.2,11), and (9.2,14) to the 
phugoid and short-period modes, respectively. 

The speed domain shown corresponds to a range of CWe from .2 to 1.8. 
This is somewhat larger than that over which one might expect the theory 
to be accurate. The highest speed corresponds to ill = .82 at  which com- 
pressibility effects would be expected to be present in CLu, GDa, and CTv, 
and possibility in CLV and Cmy.  On the other hand, at  the large CL corre- 
sponding to the lowest speed, flow separation effects might be expected to 
occur on the cruise configuration in the absence of boundary layer control, 
affecting several of the derivatives. 
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FIG. 9.4 (a) Variation of phugoid properties with flight speed, Kn = . lo.  (6) Variation 
of short-period properties with flight speed, Kn = .lo. 
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The phugoid period is seen to behave qualitatively as predicted by Lan- 
chester's theory, and the usefulness of the approximate theories for pre- 
dicting it is evident. Not so for the damping of the phugoid however, for 
which the approximate theories fail to predict the severe loss of damping 
a t  low speeds, where the number of cycles to half amplitude increases to 
nearly six. 

The short-period mode has essentially constant nondimensional eigen- 
values [note that Cwe does not appear in (9.2,14)]. The variation shown in T 
comes almost entirely from that of t* = 612 Ve. The approximation given by 
(9.2,14) is to the accuracy of the graph indistinguishable from the exact 
solution. 

At the lowest speed the separation of the periods of the two modes is 
much less than a t  high speeds, their ratio a t  274 fps being only 3.9 by 
contrast with 34.8 at  821 fps. 

Figure 9.5 shows the root-locus of the phugoid mode. That for the short- 
period mode is virtually a pair of conjugate points and is not shown. 

Figure 9.6 shows how the modal characteristics (the eigenvectors) have 
changed a t  the lowest speed. The most significant feature is that appreciable 
Acr has appeared in the phugoid and AV in the short-period mode. This can 
be traced to the fact that the periods of the two modes are much closer to 
one another a t  this speed, and hence that the coupling between the previously 

FIG. 9.5 Root locus-phugoid mode, variable Cwe. 
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FIG. 9.6 (a) Vector diagram of phugoid mode-Cwe = 1.8. ( b )  Short-period mode- 
CWe = 1.8. 
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lightly-coupled degrees of freedom is stronger. That is to say, a variation of 
u at the short-period frequency can induce an appreciable speed change 
under these conditions and the pitching moment variation during the phugoid 
(associated mainly with C,$) can induce appreciable changes in a. Now we 
arrived at  the approximations (9.2,9) and (9.2,14) by ignoring Au in one mode 
and A v  in the other. It therefore follows that the approximations might 
be poorer at  low speed than at  high speed. This is clearly shown for the 
phugoid damping in Fig. 9.4a, but the approximations to the phugoid period, 
and to the short-period mode, are not appreciably worse at low speed than 
a t  high speed. 

9.4.2 EFFECT OF ALTITUDE 

When the altitude is varied at constant Cwc and constant static margin 
the density change has two separate effects. The first is on ,u and jv which 
are both smaller at  lower altitude, and the second is on the true speed Ve, 
which also decreases with decrease of altitude. The matrix (9.1,l) is still 
applicable, and with the same assumptions as used before the only quantities 
in it that change are ,u and fV. Computations were carried out for the altitude 
range 0 to 40,000 ft  for CWe = .26 and K, = .10. The results are shown on 
Figs. 9.7 to 9.11. As with the speed variation previously discussed, the 
results would not be expected to be accurate at the highest altitude, where 
the speed is about 900 fps, i.e. M = .93, since compressibility effects were 
not included in the aerodynamic derivatives. The speed is seen in Fig. 9.7 
to vary over a range of 2 : 1 as the height changes, and this has a large effect 
on the phugoid periods. This is evident in Fig. 9.8, where the period is seen 
to vary with height in the same way as does the speed, qualitatively as 
predicted by the Lanchester formula. From (9.2,14) it follows that 13, for 
the short-period varies approximately as l / p ,  and hence that T varies 
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FIG. 9.7 Variation of V, with altitude-horizontal flight. Gw8 = CLe = .25. 
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FIG. 9.10 Root locus-short-period mode, variable altitude 

FIG. 9.11 Root locus-phugoid mode, variable altitude. 
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approximately as (Geve)- l .  Since peV2 is a constant a t  constant Cwe the 
short-period is expected to vary only slightly with height, and this is evident 
in Pig. 9.9. The damping of both modes is higher in the denser lower atmos- 
phere. This is predicted for the short-period mode by (9.2,14), but not for 
the phugoid by (9.2,9). The nondimensional roots show large and qualitatively 
similar variations for both modes in Pigs. 9.10 and 11. 

9.4.3 EFFECT OF FLIGHT-PATH ANGLE 

To calculate the stability characteristics for nonhorizontal flight it is 
necessary to neglect all the z derivatives, and use the system matrix of 
(5.13,19). The basic aerodynamic assumptions made in the following calcu- 
lations are the same as those used in Sec. 9.1 but the following important 
difference should be noted-the thrust and lift are no longer equal to the 
drag and the weight, respectively. Instead a t  angle of climb ye we have, when 

Since with the assumptions of the model used, C T y  = -2CT,, this derivative, 
and hence the coefficient a,, of the matrix, vary strongly with ye. It is also 

FIG. 9.12 Variation of phugoidmode parameters with y. Cwe = .25, altitude = 30,000 ft. 
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necessary to note that for negative flight-path angles (diving flight) greater 
than a few degrees (9.4,l) would require negative thrust. For this range of 
y, we have assumed for the purposes of the example that T, is zero and that 
dive brakes are extended to provide the necessary drag, i.e. that 

CDe = -Cwe sin y, (9.43) 

Thus for y, less than the power-off glide angle, a,, = (Cwe/p) sin y,. The 
main results of calculations of the eigenvalues are shown on Figs. 9.12 and 
9.13 for the constant values CWe = .25, pe = .000889, K, = .lo. The short- 

I 
I 

Sec I 
4000 1 

FIG. 9.13 Variation of the time to half amplitude of the phugoid mode with y. 

period mode is not significantly affected by y,, but the phugoid is very much. 
Figure 9.12 shows the variation of its period and damping over the range 
-20 I ye I 20'. Although the period varies only slightly, the damping 
deteriorates rapidly with increasing climb angle until the mode becomes 
unstable above 10.8'. At 20' climb angle the number of cycles to double 
amplitude has decreased to about 2.2, but because of the long period the 
time to double, as shown on Pig. 9.13, is still very long-289 sec. 

This behavior of the phugoid damping is approximately predicted by the 
two-degree-of-freedom analysis. If ye be retained from the beginning, with 
CTv = -2CT, for constant-thrust powered flight, the same method that 
was used to obtain (9.2,9) yields for this case the characteristic equation 

1 Cwe 2 
s2 + - (2Ca - CW, sin ye)s + (Cw, cos ye - CDc sin y,) = 0 (9.4,3) 

2~ 2~ 

The coefficient of s, which gives the damping, decreases as y, increases, and 
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vanishes a t  the critical angle 

For the example, this is 8.6", somewhat less than the correct value of 10.8" 
obtained from the complete system of equations. 

The unstable phugoid can be shown to be entirely a consequence of the 
thrust law assumed. If the propulsion system were one of constant power 
TV instead of constant thrust T, the value of CTV would be -3CTe instead 
of -2CTe [see (7.8,5)]. In  that case the coefficient of s in (9.4,3) turns out 
to be 3CDe/2p, a positive number almost independent of climb angle, and 
the approximate theory indicates no important change of phugoid char- 
acteristics with angle of climb. Values of CTV intermediate between the two 
values used above would give less reduction in the damping than shown in 
Fig. 9.12. 

9.4.4 EFFECT OF VERTICAL DENSITY-GRADIENT 

The effect of khe vertical gradient in atmospheric density on the char- 
acteristic modes of horizontal flight was first. discussed by Scheubel (ref. 9.1), 
and later in more detail by Neumark (ref. 9.2) and Walkowicz (ref. 9.3). 
Their principal conclusions were that the short-period motion is unchanged 
by the density gradient, but that the phugoid period is appreciably shortened 
by an amount that increases with speed. Neumark also pointed out that the 
characteristic equation for this case is of the fifth degree and that the extra 
root is a small one corresponding to the tendency of the vehicle to seek or 
depart from its equilibrium altitude, depending on whether or not the root 
is negative. Neumark concluded, based on examples in which the thrust 
was independent of height, that the damping of the phugoid was unaffected 
by dp/dz .  In  fact, the phugoid damping is very sensitive to the thrust law, 
and as shown in the example that follows, in which T K p so that CT, = 0 
(a reasonable approximation for jet engines), the damping can be very much 
reduced at  all speeds by the density gradient. Before proceeding to the 
numerical solutions of the complete equations however, i t  is instructive to 
present Scheubel's extension of the simple Lanchester analysis of the phugoid 
period. I n  Sec. 9.2 we saw that with Lanchester's approximations there is a 
vertical "spring stiffness" k given by (9.2,3) that governs the period. When 
the density varies there is a second "stiffness" k' resulting from the fact 
that the increased density when the vehicle is below its reference altitude 
increases the lift, and vice versa. This incremental lift associated with a 
density change is 

A L  = CL$V2S Ap 
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so that 

From the definitions of 3, d and noting that CLe = Owe we get 

The density variation in the atmosphere is closely exponential over appreci- 
able altitude ranges, so dp /̂dd = (l/pe)(dp/d$) is roughly constant. Thus we 
find that k' is approximately constant, whereas k from (9.2,3) depends on 
CWep, which varies as V-2 for constant weight. The density gradient therefore 
has its greatest relative effect a t  high speed. The correction factor for the 
period, which varies inversely as the square root of the stiffness, is 

k K = . -  - 1 

( E  + k'Y - (1 + L'P)" (9.476) 

so that the period with density gradient is T' = KT. With the given values 
of k and k' this becomes 1 

(9.4,7) 

in which the principal variable is seen to be the speed, occurring in the form 
of the Froude's number (V,2/gC). The reduction in phugoid period predicted 
by (9.4,7) for the example airplane is 14% a t  500 mph, which is very close 
to the exact result of 13 % (Fig. 9.14). 

In  order to provide a complete comparison with the approximation based 
on constant density, we use the fifth-order system (5.13,18) to make numerical 
calculation for the same conditions as hold in Figs. 9.4 and 9.5. All the z 
derivatives CTZ, GDZ, CL,, Cm, have been assumed to be zero, and the only 
density-gradient effects are embodied in the dp/dz terms. Note that CT, = 0 
implies a propulsion system in which the thrust is proportional to p. With 
all the assumptions that pertain to this example explicitly incorporated, the 
system matrix is 
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FIG. 9.14 Effect o f  density gradient on phugoid characteristics. Altitude 30,000 f t .  

The value of d$/dZ was obtained from the tables for the U.S. Standard 
Atmosphere (ref. 9.14) as follows: 

" 1 E d p  - C d log dp = - - - - - - - 
2 p, 2 dz 2 d h  

(9.4,9) 

where h is the altitude. From the tabulated data, d log p/dh a t  about 
30,000 f t  altitude is found to be -4.16 x and hence d,5/d& = 

&(15.40)(4.16)10-5 = .000320. With this value, the eigenvalues of (9.4,s) 
have been calculated for the same range of speeds as used in Figs. 9.4 and 9.5. 
The short-period mode is found to be unchanged to three significant digits, 
in agreement with Neumark, the phugoid damping and period are both 
altered, and a new stable nonoscillatory mode of long time constant appears. 
Figure 9.14 shows the quite substantial effects on the phugoid. It is clear 
from these graphs that neglect of atmospheric density gradient can lead to 
considerable error. This is especially significant with respect to the damping 
since the constant-density approximation gives unconservative results. 

The fifth root of the characteristic equation is negative, corresponding 
to a stable subsidence. Its characteristic time, plotted on Fig. 9.15, is seen 
to be very long. This mode is related to the weak tendency of the vehicle 
to fly a t  its equilibrium altitude (note that there is no preferred altitude in 
the constant-density case). The eigenvector of this mode for Ve = 561 mph 
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FIG. 9.15 Time to damp of altitude-convergence mode. 

is found to be A v : A ~ : q ^ : A 0 : 2 ~  = -.I61 x 10-3:.187 x 10-7:-.398 x 
10-9:.199 x lOP4:l which shows that, like the phugoid, it is a mode with 
negligible Au and q^. That is, it is an "arrow7' mode, in which the vehicle 
axis is closely aligned with the velocity vector while i t  drifts slowly back 
to its equilibrium altitude. The principal degree of freedom is clearly zE. 
The relative magnitudes are a little deceptive however because of the small 
length (C/2) used to  make z~ nondimensional. For this vehicle, a decrease 
in altitude of 1000 f t  in this mode would correspond to A& = 130 and a 
AV of -2%. 

It is instructive to ,  examine the approximation obtained by neglecting 
Au and the C ,  equation, just as was done previously with the fourth-order 
system. For additional generality, to allow for other than jet engines, we 
retain the term CTZ in the first equation. When the same procedure is 
followed as led to (9.2,9) the result is the cubic characteristic equation 

When the thrust is independent of height and speed, as for a rocket engine, 
CTZ is given by (7.12,l)  as CTZ = -CT, dpAld2 and CTv = -2CTe. The last 
term of (9.4,10) then disappears, one root is zero, and the remaining two 
are given by 

Without the dpA/di term, this is exactly the phugoid approximation (9.2,9), 
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and the constant term can be identified exactly as the augmented "spring- 
constant" that led to (9.4,7)-note that the ratio of the last two terms is 

It is clear that the approximation to the fifth root in this case is a = 0, and 
that the phugoid is changed only to the extent of the reduced period. The 
damping term CTy/2p is unaffected by the presence of the density gradient. 
This is consistent with Neumark's finding for examples in which T is constant. 

When the propulsion system is comprised of jet engines, a reasonable 
-2C = approximation is T cc p and independent of V, in which case CTy - 

T e  
-2CDo and CTz = 0. The last term of (9.4,10) is then (CD,CW,/2,u2)(dj3/d2), 
a small positive constant. An approximation to the fifth root is obtained by 
neglecting the s2 and s3 terms of (9.4,10) with the result 

This actually gives a very good approximation to this root for the example 
treated. It is seen to correspond to a stable convergence. The effect on the 
remaining phugoid roots can now be inferred. The coefficient of the next-to- 
the-highest order term in any characteristic equation is equal to the negative 
of the sum of the roots.? Since the imaginary parts cancel the result is the 
"sum of the dampings." In this case this yields 

where the phugoid roots are fiph f ihp,. I t  follows that the "sum of the 
dampings" is a constant, and hence that the presence of the stable fifth root 
must be accompanied by a reduction in the damping of the phugoid. 
Specifically 

Bor the example case at  CWe = .20, this gives t h e  reduction in phugoid 
damping from the constant-density case, Ah,,/ri,,, within about 1 %. 

In  summary, it is clear that even at  subsonic speeds the classical "stability 
quartic" derived from a uniform-atmosphere model can be significantly in 

t Verify by comparing 1.h.s. and r.h.s. of (s - 3rl)(s - #I2). . - (S - I,) = 8" + 
n-1 + 

%-IS 
. co. -c,-I is equal to the trace of the system matrix A ,  i.e. to the sum 

of its diagonal elements. 
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error with respect to the phugoid roots, and the' design of autopilot systems 
to maintain speed and/or altitude may require the use of the more accurate 
model. At supersonic speeds the effect of density gradient is larger still. 
However it should be noted that the flat-Earth model itself becomes inade- 
quate a t  high supersonic speeds (see Sec. 9.10). 

9.4.5 EFFECT OF STATIC MARGIN 

It was indicated in Chapter 6 that the single most important aerodynamic 
characteristic for longitudinal stability is the pitch stiffness Cma, and that 
it varies strongly with the C.G. position, i.e. 

where the static margin is K, = h, - h. The effect of this parameter is 
demonstrated by using (9.1,l) with 'variable K,. The results for all other 
data the same as in Sec. 9.1 are shown on Figs. 9.16 to 9.19. Figure 9.16 
shows that the phugoid period and damping vary rapidly at low static 
margin, and that the approximation (9.2,9), which does not include the effect 
of the pitch stiffness, is useful only at large K,. Approximation (9.2,11), 
however, gives the trends with K,  quite well. The period goes to infinity, and 
N N  to zero at a value of K, slightly greater than zero. Figure 9.17 shows 
the variation of the short-period roots. These too vary strongly with pitch 
stiffness, the mode becoming nonoscillatory at K,  slightly less than .0l. 

-___----- 
1.6 

1.4 

1.2 

T, sec 

Static margin, K,  

FIG. 9.16 Variation of period and damping of phugoid mode with static margin. 
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T, sec 

Static margin, K,, 

FIG. 9.17 Variation of period and damping of short-period mode with static margin. 

The approximation of (9.2,14) is seen to be excellent over the whole oscillatory 
range. 

Additional insight into the behavior of the modes is obtained from the 
root-locus plots of Fig. 9.18. Figure 9.18a shows that the damping ri of the 
short-period mode remains essentially constant as K,  decreases, while the fre- 
quency C decreases to zero a t  K,  between .O1 and .02 (point A). The root 
locus then splits into a pair of real roots, branches AB and AC of the locus. 
These represent damped aperiodic modes, or subsidences. Figure 9.18b shows 
that the phugoid mode behaves similarly as the C.G. is moved backwards 
towards the neutral point. At point D, when the C.G. is just forward of the 
N.P., the oscillatory phugoid also degenerates into a pair of aperiodic modes, 
the branches DP and DE of the locus. DP is a subsidence and that portion 
of DE to the right of the origin represents a divergence-i.e. the airplane 
is statically unstable when K,  is negative. 

The behavior of the roots is quite interesting for h  > h, + .02. The branch 
A B  of the short-period mode and the branch DP of the phugoid "collide" 
a t  P when the C.G. is between 2 and 23% of E behind the N.P. A new oscil- 
latory mode then appears corresponding to the branches P G  of the locus. 
This is a stable oscillation whose damping and period are intermediate 
between those of the two parent modes. The eigenvector for this mode shows 
that all three degrees of freedom AT', Am, A0 are significantly excited, and 
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hence there is no simple approximation to it. Since the range of C.G. positions 
in which this mode occurs is that for which there is already one unstable 
root (DE), it is of academic interest only. 

It was shown in Sec. 9.3 that the criterion for static stability is (9.3,3). 
The calculations presented in Fig. 9.18b verify this conclusion, since in the 
example CmV = 0 and the criterion reduces to K ,  > 0. When the C.G. is 
aft of the N.P. the rate of divergence of the unstable mode is as shown in 
Fig. 9.19 (curve for Cmv = 0). The time to double rapidly decreases with 
decreasing K,  to values-too short to be manageable by a human pilot. 

FIG. 9.18 (a) Locus of short-period roots, varying C.G. pdsition. Cmv = 0. (b) LOCUS of 
phugoid roots, varying C.G. position. Gmp = 0. 
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(b) 

FIG. 9.18. (Contd.) 

9.4.6 EFFECT OF SPEED DERIVATIVES 

In  the preceding examples, all the speed derivatives except CTV were 
assumed to be zero. Now speed effects are highly dependent on the con- 
figuration, and for subsonic airplanes result from both aeroelastic and com- 
pressibility effects. They vary widely from one vehicle to anbther, and can 
change rapidly with Mach number (implying that the small-disturbance 
theory is very restricted in that case). It is not therefore feasible to give 
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Static margin, K, 

FIG. 9.19 Time to double of the divergent mode. 

any generally useful results for speed effects. There is one point, however, 
which is worth exploring, and that is the effect of C, on the roots. Equation 
(9.3,3) shows that this derivative can affect the static stability, negative 
values producing a reduction in the stability boundary h, [see (6.4,26)]. 
To illustrate this, the value of Cmy has been set equal to -.lo in (9.1,l) and 
the eigenvalues found for the same range of K ,  as used in the previous 
example. This value of CmV is quite representative of what may occur a t  
high subsonic Mach number. The root loci obtained look much like those 
presented in Fig. 9.18. The short-period mode is changed only slightly, but 
the phugoid has an important difference; namely, the divergent branch DE 
crosses the axis a t  K ,  = .20 instead of a t  zero. Thus there is an unstable 
divergence over the whole of the C.G. range used in the example. The nature 
of this divergence is seen in Fig. 9.19, which shows the time to double 
amplitude. The divergence associated with this value of CmV is not very 
rapid for reasonable design values of K,, i.e. K ,  > .03, for then tdouble > 8 
sec and the airplane would not be unmanageable. The unstable mode is one 
involving primarily the speed and flight-path angle (of opposite sign) so 
that i t  represents either a climb a t  increasing climb angle and decreasing 
speed, or a dive of increasing speed and dive angle. The latter is what was 
called a "compressibility dive" a t  the end of World War 11. The nonlinear 
features rapidly take over control of these motions as A V  increases. For the 
climb divergence, the reduction of speed and Mach number take the vehicle 
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back toward the incompressible regime and a reduction in ]Cmvl whereas 
the dive case leads to increasing M and possibly an aggravation of the 
divergence. 

9.5 LONGITUDINAL CHARACTERISTICS OF A STOL 
AIRPLANE 

The curves of Figs. 9.4 and 9.5 show that the characteristic modes of an 
airplane vary markedly with speed, i.e. with the equilibrium weight coefficient 
Cwe. I n  particular, the two characteristic periods begin to approach one 
another as Cwe becomes large. It is of interest to explore this range more 
fully by considering an STOL airplane, operating in the "powered-lift" 
region for which Cwe may be much larger. To this end the data given in 
ref. 7.11, part of which is shown in Fig. 7.6,  has been used to obtain a 
representative set of coefficients for 2.0 < CWe _( 5.0. The flight condition 
assumed is horizontal steady flight, so that Cg = 0 (see Fig. 7.6b). (The 
particular data used from the reference was that for the aircraft with a 
large tail in the high position, it = 0,  and df = 45O.) From the given curves, 
and from cross-plots of the coefficients GL, CD, and C, vs. CT a t  constant a, 
the data in Table 9.3 was derived for the equilibrium condition. Smooth 
curves were used for interpolation. Since this is not a tilt-wing airplane, aT 
is not large in the cases considered, and has been assumed to be zero. 

Table 9.3 

Basic Data for STOL Airplane 
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FIG. 9.20 Root locus-short-period mode, STOL airplane. 

Since aeroelastic and compressibility effects are negligible at  the low speeds 
of STOL flight the required speed derivatives are given by (see Table 7.1) 

For a propeller-driven airplane, the value of CTv is given by (7.8,5), and an 
examination of the data on q for a typical constant-speed propeller a t  low 
speed? showed that (Ve/q,)(aq/aV), is close to unity. Hence we have used 
CTv = -2CT, in this example. 

Using the formulae of Table 7.1, the following estimates were made of the 
q and c i  derivatives: 

Finally the following inertial and geometric characteristics were assumed : 

W = 40,000 Ib, S = 1000 ft', A = 5.42, E = 13.60 f t  

p, = 76.8, I,,, = 385, h = .30 

With the above data, the coefficients of the system matrix (9.1,l) were 
evaluated, and its eigenvalues and eigenvectors calculated. The main results 
are shown on Figs. 9.20 to 9.24. Figures 9.20 and 9.21 show the loci of the 
roots as Cwe varies between 2 and 5. The effect of CWe is seen to be large 
on both modes, the short-period mode becoming nonoscillatory a t  a value of 
Cwe somewhat greater than 3.5, and the damping of the phugoid increasing 

t The De Havilland Buffalo airplane. 



FIG. 9.21 Root locus-phugoid mode, STOL airplane. 

FIG. 9.22 Periods of oscillatory modes, STOL airplane. 



Fra. 9.23 Time to damp of modes, STOL airplane. 

FIG. 9.24 (a) STOL airplane, vector diagram of phugoid mode. Cwe = 3.5. (b) Short- 
period mode. CWe = 3.5. 
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FIG. 9.24 (Contd.) 

rapidly a t  the same time. Figure 9.22 shows the two periods, and that they 
actually cross over a t  CWe i 3.4. The concept of the phugoid as a "long" 
period oscillation is evidently not applicable in this situation! The approxi- 
mations (9.2,11) to the phugoid, and (9.2,14) to the pitching mode are also 
shown for comparison. It is seen that they give the two periods quite well, 
and that (9.2,14) also depicts quite accurately the damping of the pitching 
oscillation and of the two nonperiodic modes into which i t  degenerates a t  
high Cw,. The phugoid damping, however, is not a t  all well predicted by the 
approximate solution, and (9.2,9) gives even larger discrepancies for both 
period and damping. Figure 9.23 shows the damping times for the modes, 
and they are all seen Lo be heavily damped over the whole range. 

The eigenvectors for the two modes are shown on Fig. 9.24 for CWe = 3.5, 
the condition of nearly equal periods. The relative configurations of the 
vectors are seen to be quite similar to those for the jet transport a t  CWe = 1.8 
(Fig. 9.6), but the magnitudes of AK in the phugoid, and A V  in the short- 
period mode are appreciably larger. 

Next Page



Response to actuation of 
the controls (open loop) 

C H A P T E R  I0 

10. I INTRODUCTION 

From the system theory presented in Chapter 3 we see that i t  is convenient 
to classify vehicle motion according to whether it is free or forced. Chapter 9 
was devoted to a discussion of a number of examples of the former, and in 
this chapter we give some illustrations of the latter. The particular cases 
studied here are those in which the motion results from nonautonomous 
actuation of the controls. That is, we exclude those in which the controls 
are moved in  response to the vehicle motion in accordance with a prescribed 
law, as by an autopilot. Such motions are the subject matter of Chapter 11. 
We should recall as well that for linearlinvariant systems (Sec. 3.4) there is 
really only one fundanzental response problem The impulse response, the 
step response, and the frequency response are all explicitly related, and the 
convolution theorem (3.4,41) and (3.4,43) enables the response to any 
arbitrary control variation to be calculated from a knowledge of either the 
impulse response or the step response. 

In  the examples that follow, we consider the response of an airplane to 
actuation of its principal controls, the throttle and the three aerodynamic 
control surfaces. The examples include both step and frequency response, 
and both linear and nonlinear cases. 

As shown in Chapter 3, the basic item needed for computing frequency 
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response, and for formulating response problems analytically is the transfer 
function that relates the relevant responses and inputs. In the present 
context the input is the control vector. The required transfer functions can 
be found either from the standard first-order form of the differential equations 
of motion, in which case they are given by (3.2,23), or from the Laplace 
transforms of the equations (5.11,s to 10) or (5.14,l to 3). There is an essential 
theoretical difference between the two methods, since the former implies 
the representation of the aerodynamic forces by means of aerodynamic 
derivatives, and the latter allows (but does not require) the use of exact 
linear aerodynamics (see Sec. 5.11). Practically, there is only a difference 
between the responses calculated by the two approaches when the aero- 
dynamic control surfaces are moved very rapidly. 

LONGITUDINAL CONTROL 

The two principal quantities that need to be controlled in symmetric 
flight are the speed and the flight-path angle, that is to say, the vehicle's 
velocity vector. To achieve this obviously entails the ability to apply control 
forces both parallel and perpendicular to the flight pat.h. The former is 
provided by thrust or drag control, and the latter by lift control via elevator 
deflection or wing flaps. I t  is evident from simple physical reasoning (or 
from the equations of motion) that the main initial response to opening the 
throttle (increasing the thrust) is a forward acceleration, i.e. control of speed. 
The main initial response to elevator deflection is a rotation in pitch, with 
subsequent change in angle of attack and lift, and hence the development 
of j ,  a rate of change of flight-path angle. When the transients that follow 
such control actions have ultimately died away, the new steady state that 
results can be found in the conventional way used in performance analysis. 
Fig. 10.1 shows the basic relations. The steady speed V at which the airplane 
flies is governed by the lift coefficient, which is in turn fixed-by the elevator 
angle-see (6.4,13). Hence a constant 6, implies a fixed V. The flight-path 
angle y at  any given speed is determined, as shown in Fig. 10.1, by the thrust. 
Thus the ultimate result of moving the throttle at  fixed elevator angle (when 
the thrust line passes through the C.G.) is a change in y without change in 
speed. But we saw above that the initial response to throttle is a change in 
speed-hence the short-term and long-term effects of this control are quite 
contrary. Likewise we saw that the main initial effect of moving the elevator 
is to rotate the vehicle and influence y ,  whereas the ultimate effect at  fixed 
throttle is to change both speed and y. The short-term and long-term effects 
of elevator motion are therefore also quite different. The total picture of 
longitudinal control is clearly far from simple, and the transients that connect 
the initial and final responses require investigation. We shall see in the 
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FIG. 10.1 Basic performance graph. 

following that these are dominated by the long-period, lightly damped 
phugoid oscillation, and that the final steady state with step inputs is reached 
only after a long time. These matters are explored more fully in the following 
sections. 

LATERAL CONTROL 

The lateral controls (the aileron and rudder) on a conventional airplane 
have three principal functions. 

1. To provide trim in the presence of asymmetric thrust associated with 
power plant failure. 

2. To provide corrections for unwanted motions associated with atmos- 
pheric turbulence or other random events. 

3. To provide for turning maneuvers-i.e. rotation of the velocity vector 
in a horizontal plane. 

The &st two of these purposes are sereed by having the controls generate 
aerodynamic moments about the x and z axes-rolling and yawing moments. 
For the third a force must be provided that has a component normal to V 
and in the horizontal plane. This is, of course, the component L sin 4 of 
the lift when the airplane is banked a t  angle 4. In  the equation of motion 
this appears as the sin 4 term in (5.9,6). Thus the lateral controls (principally 
the aileron) produce turns as a secondary result of controlling 4. 
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Ordinarily, the long-term responses to deflection of the aileron and rudder 
are very complicated, with all the lateral degrees of freedom being excited 
by each. Solution of the complete equations of motion is the only way to 
appreciate these fully. Certain useful approximations of lower order are 
however available. 

18.2 RESPONSE TO ELEVATOR INPUT 

For the conventional case of cruising flight of airplanes, (5.14,2) can be 
used for the response to elevator by setting AC~~ = 0. We shall &st make 
some simplifying a.ssumptions, i.e. that uT = 0, that the reference fight 
path is horizontal, so ye = 0, and that all of dDV, dLT, bmV, dk are negligible. 
It is assumed further that deflecting the elevator can change the lift and - 
moment, but not the drag, so that hCDc = 0, hCLc = Gu Ade and Acme = 

Cm6 g,. Then (5.14,2) reduces to 

The aerodynamic transfer functions on the r.h.s. can usually be represented 
well enough by (see Sec. 5.14) 

and Cmg is furthermore frequently neglected. 
Let the 4 x 4 matrix on the 1.h.s. of (P0.2,l) be denoted P. Then (10.2,1) 

may be compactly written 
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We premultiply dy P1 to get 

whence the transfer-function vector for elevator input is 

Since P is the matrix of the nondimensional equations, then the elements of 
4 relate the Laplace transforms of the nondimensional variables, for example 

The above elements of 4 do not exhaust the transfer functions of interest. 
Other response quantities may be wanted-for example, the flight-path 
angle and the normal load factor. The former is given by y = 8 - a, so that 

byb = boa - baa 
The latter (see 8ec. 6.10) is 

L a = -  
W 

and is unity in the reference condition. The perturbation in n  is 

to first order. ACL is conveniently expressed in terms of the state variables as 

ACL = bLV h~ + &La + bL,q + bLGhSe 
After substituting in the Laplace transform of (10.2,8), and dividing by - 
Ad, we get 
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The preceding equations can be used directly for machine computation 
of frequency response functions, which basically requires only routine 
operations on matrices with complex coefficients; an example of this appli- 
cation is given below. However, for analysis one needs the literal expressions 
for the various transfer functions, and in some applications one must also 
find their inverse (the impulse response functions). This is not a practical 
analytical procedure for the complete system, even with the simpUed 
equation (10.2,l). For obtaining exact solutions for the impulse response 
or step response, the preferred method is to solve the original differential 
equations on s digital or analog computer. For analytical work associated 
with control system design, approximate forms of the transfer functions 
may be quite useful (refs. 9.4 and 9.5). 

We can find approximate transfer functions by using the short-period and 
phugoid approximations given in Sec. 9.2 as a guide. These would be expected 
to be useful for inputs whose spectral representations are limited to certain 
frequency bands appropriate to the mode in question. 

SHORT-PERIOD APPROXlMATlON 

We found in Chapter 9 that a very good approximation to the short-period 
mode is given by (9.2,14). We therefore make the same additional assumptions 
here as led to that approximation-viz. AV = 0, and the speed equation of 
motion is identically satisfied. The reduced system equation is then found 
from (10.2,1) to be 

The system transfer functions are now most simply found from (B8.2,lO) 
by solving for the ratios Aa/ASe, etc., with the result 

A ~e G =-= &ma(2ps + + CD,) - 4~sdma ( b )  (10.2,11) 
" arJE s{(fws - drna)(&La + C D ~  + - 2P'rnaI 

& as = s&,, (4 
When the aerodynamic control transfer functions are replaced by their 
stability derivative representations, i.e. by (10.23) and with 
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the denominators of the above transfer functions are all polynomials in s 
that have exactly the same roots as (9.2,14). The numerators become 

of 4, : [cm,(c~a + CDJ - cmuc~,l +s[(2pcmb + Q, , (CL~ + cDe) - CL,Cm~] 

+ s2(2uCmi) ( b )  (10.2,12) 

Both numerators are of degree one less than their respective denominators. 

PHUGOID APPROXIMATION 

The phugoid approximation in Sec. 9.2 was based on the assumption that 
Aa is negligibly small and the pitching moment equation is identically 
satisfied. When the elevator angle is varying however, Aa can no longer 
be assumed small. The equivalent assumption for this case is that pitch 
equilibrium is maintained, i.e. that 

&ma Aa + dm,$ + dm, Ad, = O 

Now we expect this approximation to be useful only a t  low elevator fre- 
quencies, when we can replace the above expression by 

We now further assume that Cm,$ is negligible, so that the angle of attack 
is given by the quasistatic value 

The usefulness of this assumption is checked a posteriori. With the pitch 
equation eliminated from (10.2,1) and Aa eliminated by (10.2,13), we get 
the reduced system equation 
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The required basic transfer functions are obtained from (10.2,14) as 

Cm* -CL*(CT~ - 2 ~ s )  + - [-2Cw,(Cw, - CD,) 
Qma 

do, = 
+ cTv(CLa + cDe) + 2 ~ s ( C T V  - C ~ a  - C ~ , )  - 4 ~ 2 s 2 1  

4p2s2 - 2pcTvs + 2Cwe2 
(b)  (10.2,15) 

G,a = sGe6 (c)  

From (10.2,13) we have in addition 

and finally 

As expected, the denominators of (10.2,15a and b) give the same characteristic 
equation as was used for the phugoid previously, i.e. (9.2,9). 

The assumptions on which (10.2,15) are based hold exactly in the limit 
of zero control frequency, and hence the static gains given by them are 
correct. Taking the limit s -+ 0 (see (3.2,4)) we get the gains 

ad 
C"d K = - -  ( c )  
cma 

If we consider a typical jet transport in cruising flight, CDe < CLa, and 

C T ,  2CDe. For this case, the gain in flight-path angle becomes, after 
simplification, 

K7, = Ke, - Kad 

The interesting thing about (10.2,17) is that it can change sign as Cw, ( = CLL) 
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FIG. 10.2 Drag polar, M = const. 

varies. With reference to Fig. 10.2 the quantity in parentheses on the r.h.s., 
for constant Mach number, can be written 

CD ~ C L  1 - -- 
QL ~ C D  

where dCL/dCD is the slope of the tangent to the drag polar, 1,. Since CL/CD 
is the slope of l,, it is evident that (CD/C,)(dCL/dCD) is unity a t  point A, 
is < 1 for CL > CLA and > 1 for CL < CLA. As a result the second term on 
the r.h.s. of (10.2,17) is negative for CL < CLA and positive for CL > CLA. 
Because of the first term in (lL0.2,17) K y d  does not change sign exactly a t  A, 
but a t  a slightly lower value of CL. With typical numerical values KyS= 0 
when (CD/CL)(dCL/dCD) i 1.05. The point of all this is that A represents 
flight a t  (LID),,,, or a t  minimum drag, and hence that the ultimate response 
of flight-path angle to elevator reverses when this speed is crossed. At high 
speed (low CL,)KYB is negative, so that up-elevator (stick back) produces a 
climb, but a t  low speed the opposite occurs. This result is seen to be entirely 
compatible with the conclusions reached from performance considerations, 
see Fig. 10.1. It is seen that the sign of T - D for a speed reduction (associ- 
ated with a negative As,) is opposite for points P and & on opposite sides 
of the minimum-drag speed. 
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NUMERICAL EXAMPLE-FREQUENCY RESPONSE 

For this example we take the same hypothetical jet transport as was used 
in See. 9.1, flying at  the same speed and height. For the aerodynamic transfer 
functions in P we use the stability derivative representation, i.e. all but Gma 
are the same as the corresponding stability derivatives, and 8,. = Gma + 
so,;. In addition, for the control aerodynamics we use 

The exact frequency response was calculated from (10.2,l) and the two 
approximations from (10.2,ll) and (10.2,15) by substituting s = i6 in them. 
The results are shown on Fig. 10.3 for speed, angle of attack, and flight-path 
angle. 

The exact solutions show that the responses in the "trajectory" variables 
V and y are dominated entirely by the large peak a t  the phugoid frequency. 
Because of the light damping in this mode, the dynamic gains at  resonance 
are very large. The peak I&,,I of about 85 means that a speed amplitude 
of 10% of Ve would result from an elevator angle amplitude of only .1 x 
57.3/85 = .068". Similarly at  resonance an oscillation of 10" in y would 
result from about 1/10' elevator amplitude. For both these variables, the 
response diminishes rapidly with increasing frequency, becoming negligibly 
small above the short-period frequency. The phase angle for V, Fig. 10.3b, is 
zero at  low frequency, diminishes rapidly to -180' at the phugoid frequency 
(very much like the lightly damped, second-order systems of Fig. 3.1%) and 
subsequently a t  the short-period frequency undergoes a further drop char- 
acteristic of a heavily damped, second-order system. The "chain" concept 
of high-order systems (Sec. 3.4) is well exemplified by this graph. 

By contrast, the attitude variables a and q show important effects at  
both the phugoid and short-period frequencies. The complicated behavior 
of a near the phugoid frequency indicates the sort of thing that can occur 
with high-order systems. I t  is associated with a pole and a zero of Ga, occurring 
close together in the exact transfer function. Again, above the short-period 
frequency, the amplitude of a and q both fall off rapidly. 

As to the approximate solutions shown, one general statement can be 
made. The short-period approximation is exact as w -+ a, and the phugoid 
approximation is exact as co -+ 0. With a single exception, all the phenomena 
shown are represented reasonably well by one or other of the approximations. 
The exception is the cr response a t  the phugoid frequency, which is revealed 
only by the exact solution. The principal error in the approximations is the 
displaced peak at  the phugoid. This corresponds to the error in the phugoid 



FIG. 10.3 Frequency-response functions, elevator angle input. Jet transport cruising 
at high altitude. (a) Speed amplitude. (b )  Speed phase angle. (c) Angle of attack 
amplitude. (d) Angle of attack phase angle. (e) Pitch-rate amplitude. (f)  Pitch-rate 
phase angle. (g) Flight-path angle amplitude. (h)  Flight-path angle phase angle. 
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period shown for approximation (9.2,9) on Fig. 9 .4~.  Had the characteristic 
equation corresponding to (9.2,11) been used instead, the approximation 
would have been better. 

NUMERICAL EXAMPLE-STE P RESPONSE 

For the same airplane and flight conditions as in the previous example, 
the response to a step-function input in the elevator angle was computed, 
using (5.13,19) mechanized for a 10-volt analog computer. As an aid to 
readers unfamiliar with analog computation, the details of this one example 
are set out rather fully. The other examples that follow later were computed 
in essentially the same way, but the details of scaling and circuits are omitted. 
With the same assumptions as made previously the differential equations 
with numerical coefficients are : 

Du = -9.20 x A P  - 9.00 x Au + q" - 4.42 X lop4 Ad, 

Dq" = 2.03 x lop6 AP - 3.62 x Au - 1.43 x 1OP2q" - 3.77 x Ad, 

To mechanize them for analog computation we make the following trans- 
formation of variables : 

where the quantities in square brackets, [V] etc., denote machine voltages, 
and sV etc. are scale factors. Time scaling is by the law 

where T is laboratory clock time, or macsecs (for computing machine seconds), 
and f is the nondimensional time variable of the differential equations. To 
relate the computer results to real flight time t we use 

t 
7 = S t -  t" ' t* = .0105 sec (10.2,20) 

On recalling that D in (10.2,18) represents d/d$, and defining [ 1' = (d /d~)[  1, 
the transformation of the equations into differential equations for the 
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voltages yields 

[elr = 2 [q] 
st% 

Note that we have chosen for convenience to give the control angles as 
Ad,, rather than [d]/s,, since Ad, not [dl is to be specified. The scale factors 
used were as follows: 

sV = 10 vlunit 

Since the response shortly after t = 0 is governed mainly by the short-period 
mode, and the long-term response by the phugoid mode, a single time scale 
is not appropriate for both. Hence two time scales were used: 

To show long-term responss: st = 

To show initial response : st = 10-2 

The analog circuit for st = and Ad, = -.03 rad is shown in Fig. 10.4, 
using conventional symbols for integrators, summers, etc. 

When st = the time relation, from (10.2,20) is 

and hence the process proceeds about 10 times faster on the computer 
than in flight. When st = the process proceeds a t  nearly real 0ight time. 

The results for v,  a, and y are shown for both time scales on Figs. 10.5 and 
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0 0.203 [V] 

0 -0.069 [V] 

+ 10 3 -0.920 [V] 

0 0.255 [el 

0 -0.900 [a] 

-3.62 [a] 

10 [ql 

- 1.43 [q] 

FIG. 10.4 Analog circuit diagram for response to elevator step. As, = -.03 rad, 
st = 1W3. 

10.6. These curves were recorded by a conventional x - y plotter; the time 
base was generated on the computer by integrating a constant. 

Figure 10.5 shows that a increases rapidly and quickly damps out to its 
asymptotic value. V and y ,  however, make a slow, weakly damped approach 
to their final values, the initial overshoot being very large for both. If the 
reason for moving the elevator were to change to a new steady state, the 
maneuver has not been a very effective one! After 500 sec the oscillations in 
V and y have still not disappeared. The behavior near t = 0 is shown more 
clearly on Fig. 10.6; the rapid rise in a is dominated by the short-period 
mode. It is only after a has changed that the associated increase in lift can 
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F I ~ .  10.5 Response to elevator (A6, = -.03 rad). Jet transport cruising at high 
altitude. 
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act to curve the flight path (via AL m V j ) ;  thus the increase in y lags that 
in cc. At the same time the increased drag due to Acc, and the "downhill" 
component of the weight combine to produce a reduction in speed, which 
lags still farther behind. The response in y is not in fact very rapid. It takes 
about 10 sec to increase y by about 10' with this elevator deflection. In 
this time the vehicle has traveled 7330 ft. 

10.3 RESPONSE TO THE THROlTLE 

The initial response of an airplane to movement of the throttle is actually 
quite dependent on the details of the engine control system and on the type 
of propulsion system. For jet engines it takes an appreciable time for the 
rpm and thrust to increase after opening the throttle, and this can be an 
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FIG. 10.6 Response to elevator (Ad, = -.03 rad). Jet transport cruising at high 
altitude. 

- - 
I I I I I ;  

important factor in emergency conditions. The response of a propeller, which 
increases thrust by a change of blade angle, is more rapid. We make the 
simple assumption here that opening the throttle produces a step change in 
CT of amount ACTc. If the thrust line does not pass through the C.G. there 
is an associated pitching moment (7.3,4) ACmC = ACTcx/E. The 1.h.s. of the 
system equation is then exactly the same as (10.2,l) and the r.h.s. is 

0 

APPROXIMATE TRANSFER FUNCTIONS 

10 20 30 40 50 t, sec 

Since the main effects of the throttle are the long-term changes in speed 
and flight-path angle, the phugoid approximation to the equations is an 
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appropriate one. The same procedure that led to (10.2,14) for this case 
gives the approximate equations 

where f(s) is the denominator of (10 2,15a). 
Just as in the case of the elevator response the static gains obtained from 

(10.3,2) are exact, since the assumptions leading to them are valid in the 
steady state They are 

When z = 0, the simplest result- is obtained, i.e. 

These show that increasing the thrust (without change of pitching moment) 
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simply leads to a new steady-state flight condition a t  increased climb angle 
and no change of speed. By contrast the other principal longitudinal control, 
the elevator, ultimately influences both speed and flight-path angle [(10.2,16a) 
and (10.2,17)], albeit the change in the latter may be of either sign depending 
on flight speed. The simple rule "throttle controls climb and elevator con- 
trols speed" is not what i t  seems. It is true that the throttle is an uncoupled 
climb control (when z = 0) but the elevator is not an uncoupled speed 
control (except a t  y,,) and the rule only applies to steady states, not to 
initial transients. 

NUMERICAL EXAMPLE-STEP RESPONSE 

Analog computations were made for the airplane and flight condition of 
the previous example, with ACTc = .0125 and with z/E = 0 and .3 The results 
for V, a, and y are shown on Figs 10.7 and 10.8. The motion a t  this time 
scale is clearly dominated by the lightly damped phugoid. Consider Fig. 10.7 

FIG. 10.7 Response to throttle (ACT = .0125). Jet transport crusing at high altitude. 
Thrust line passing through C.G. 
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FIG. 10.8 Response to throttle (ACT = .0125). Jet transport cruising at high altitude. 
Thrust line below C.G., z/F = .30. 

(z/E = 0)  first. We see that the speed begins to increase immediately, before 
the other variables have time to change. It then undergoes a damped oscil- 
lation, returning finally to its initial value. The angle of attack varies only 
slightly, and y makes an oscillatory approach to its final positive value y,,. 
The ultimate steady state is a climb with A P  = Ax = 0, the numerical 
value of y,, being correctly given by (10.3,4). For the case z/E = .3, Fig. 10.8, 
the results differ from the preceding in several significant ways. Although 
the speed does begin to increase a t  first, the increase is small and is quickly 
followed by a reduction of order 10% V,. The final value is 5% less than Ve, 
a rather large change. The initial response in u is rapid, being dominated 
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by the short-period mode, and is not seen in detail a t  this time scale. Because 
of the rapid increase in a, and the excess lift that goes with it, there is a 
much more rapid response in y than is the case in Fig. 10.7. The amplitude 
of the y oscillation is also larger than on Fig. 10.7, and the final state is a 
climb of appreciably larger inclination. The steady states are again correctly 
predicted by (10.3,3). 

10.4 LATERAL STEADY STATES 

The basic flight condition is steady symmetric flight, in which all the 
lateral variables ,i3, p, r, 4 are identically zero. Unlike the elevator and the 
throttle, the lateral controls, the aileron and rudder are not used individually 
to  produce changes in the steady state. This is because the steady-state 
values of B, p, r, 4 that result from a constant 6, or 6, are not generally of 
interest as a useful flight condition. There are two lateral steady states that 
are of interest, however, each of which requires the joint application of 
aileron and rudder. These are the steady sideslip, in which the flight path is 
rectilinear, and the steady turn, in which the angular velocity vector is vertical. 
We look into these below before proceeding to the study of dynamic response 
to the lateral controls. 

THE STEADY SIDESLIP 

The steady sideslip is a condition of nonsymnletric rectilinear translation. 
It is sometimes used, particularly with light airplanes, to correct for cross- 
wind on landing approaches. Glider pilots also use this maneuver to steepen 
the glide path, since the LID ratio decreases due to increased drag at  large /3. 
In  this flight condition D = d l d ~  -- 0, and p = r = yE = 0. Thus, with 
reference to (5.13,17), the only nonzero state variables are /3, 4, and y.  For 
the control terms we use the following, which is a good representation for 
conventional airplanes : 

With (10.4,1), and the special conditions for steady sideslip, (5.13,17) reduces 
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The fourth equation is the only one containing $, and may be dropped from 
consideration. The three preceding ones contain the four variables ,9, +, a,, 6,. 
Hence an infinite set of solutions exists, in which any one of the four may 
be selected arbitrarily. If we choose 4 to be arbitrary the equations can be 
solved for the corresponding ,6, 6,, 6, (provided of course that its matrix is 
not singular). Thus 

where 

As an example, consider the jet transport used previously, at CWe = 1.0, 
ye = 0, with the B derivatives as in Sec. 9.6. In  addition to these we need 
the control derivatives, for which we use 

C = .067 C,,, = .003 C = w.040 
' 8 ,  n& 

C = v.065 C = .005 
'6 a n6a 

It is evident from (10.4,3) that B, 6,, and 6, are all proportional to 4, hence 
the ratios of the angles are constant. The numerical result is: 

so that for a sideslip of lo0, the other angles are 4 = .56", 6, = 16.75', 
6, = -18.00". As expected, a slip to the right requires left rudder and right 
aileron. The control angles are seen to be large ; powerful controls are needed 
to sideslip a t  large angles. When the matrix A is singular, it only indicates 
that 4 is zero in the sideslip. In  that case the equations can be rearranged 
to put 4 on the 1.h.s. and /? on the r.h.s., in which case the new matrix is 
very unlikely to be singular. 

THE STEADY TURN 

We define a "truly banked" turn to be one in which (i) the vehicle velocity 
vector o is constant and vertical (see Fig. 10.9) and (ii) the resultant of 
gravity and centrifugal force at  the mass center lies in the plane of symmetry. 
This corresponds to flying the turn on the turn-and-bank indicator.? It is 
quite common for turns to be made a t  bank angles that are too large for 

t Neglecting the fact that the pilot and indicator are not right at the C.G. 
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I 
FIG. 10.9 Steady climbing turn. 

linearization of sin 4 and cos 4 to be acceptable, although all the state 
variables other than 4 and V are small. Thus we turn to the basic nonlinear 
equations in See. 5.8 for this analysis. The large bank angle has the conse- 
quence that coupling of the lateral and longitudinal equations occurs, since 
more lift is needed to balance gravity than in level flight. Thus not only the 
aileron and rudder but the elevator as well must be used for turning a t  large 4 .  

The body-axis angular rates are given by 

which for small elevation angle 8 yields 
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We now apply the second condition for a truly banked turn-that the 
ball shall be centered in the turn-and-bank indicator. This means that the 
vector mg - ma, shall have no y component. But ma, is the resultant external 
force f, so that from (5.5,3) 

mg - ma, = mg - f = -A 

where A is the resultant aerodynamic force vector. Thus we conclude that 
the aerodynamic force must lie in the xz plane, and that Y = 0 .  It follows 
from (5.8,2b), when only 4 and u are not small, that 

mg sin 4 = mru = mrV (10.4,6) 

= n l v o  cos 4 

Hence the bank angle is given by 

ov 
tan 4 = - 

B 

We choose the body axes so that a, -- w -- 0 ,  whence it follows (see Fig. 4.4) 
that z and zw coincide, and hence that L = -2. Equation (5.8,2c) then 
permits the determination of L, i.e. 

L = -2 = mg cos 0 cos 4 - m(pv - pu) 

which, again to first order, after substituting q from (10.4,5) yields 

L = mg cos 4 + m V o  sin 4 (10.4,s) 

When Vw is eliminated by (10.4,7) we get 

The incremental lift coefficient, as compared with straight flight a t  the same 
speed and height, is 

We can now write down the equations governing the control angles. Prom 
(5.8,3), to first order, L = M = N = 0 ,  so we have the five aerodynamic 
conditions 

C,  = c, = C,  = Cv = 0 

and ACL = ( n  - l)Cw 
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On expanding these with the usual aerodynamic derivatives, we get 

Cqep + C,p$ + C,,.3 f ' l d l  'T + CL60 = O 

Cma Am + Cmp4 + omac  bSe = 0 

QnaB + C n j  + Cn,' -I- Cfl,r ST + Cn6@ 8, = 0 (10.4,ll) 

c,,p + Cv,$ + C,?P + Qv,r ST = 0 

QL, Am + cL,4 + CL,, ASe = (n - l ) cw 

In  these relations $, 4, ; are known from (10.4,5), i.e. 

The five equations (10.4,ll) for the five unknowns [p, ST, S,] and [Am, ASe] 
uncouple into two independent sets : z:: ;3 = 11 [ -cos ' q5 ] ' 2V (10.4,13) 

c n S  Qns, Cna Cn, Cnl 
and 

Note that the matrix on the 1.h.s. of (10.4,13) is the same as that of (10.4,3). 
When (10.4,9) is used to eliminate q5 from (10.4,14), and after some routine 
algebra, the solution for A8, is found to be 

c, + "+' - cLqcm) 
AS, = (n - l)Cw (10.4,15) 

Except for far forward C.G. positions and low speeds, the angles given by 
(10.4,15) are moderate. The similarity of this expression to that for elevator 
angle per g in a pull-up (6.1076a) should be noted. They are in fact the same 
in the limit n + co. The elevator angle per g in a turn is therefore not very 
different from that in a vertical pull-up. 

Finally, the lateral control angles are obtained from the solution of (10.4,13) 
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NUMERICAL EXAMPLE 

The values of [p, d,, d,] corresponding to low-speed flight a t  sea level 
(CL = 1, p = p,,) for the jet transport of the previous examples have been 
calculated from (10.4,13) and are shown in Fig. 10.10. The numerical data 
and the aerodynamic coefficients are the same as in Secs. 9.6 and in the steady 
sideslip above. Both the sideslip angle and the rudder angle are seen to be 
very much dependent on 8 .  This may be traced directly to the fact that 
the roll rate p is proportional to 8 and changes sign with it. 

FIG. 10.10 Control angles in a truly banked turn. 
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Thus the term C,$ in the yawing moment equation is of opposite signs 
for climb and glide, and affects the rudder angle required to cancel the mo- 
ment. Since C, must also be zero, the value of /3 is in turn affected by that 
of 6,. One would expect that the difference in Ct,$ between climbing and 
gliding would likewise cause a substantial difference between 6, for the two 
cases, whereas no such difference exists. It is fortuitous that in this example 
the term C,/3 provides just the difference in the rolling moments needed. 

Since $ > 0 represents a right turn, we see that the ailerons are deflected 
in the "off-bank" sense (stick left), that considerable right rudder is used 
for gliding turns, but that for climbing turns it may be in either direction. 

Finally, it may be remarked that the control angles obtained would have 
been substantially different had it been stipulated that b, not C,, should be 
zero in the turn. It would not then be possible, however, to satisfy the 
requirement that the ball be centered in the turn-and-bank indicator. 

10.5 LATERAL FREQUENCY RESPONSE 
The computation of the lateral frequency response is carried out with 

(5.14,3). The column vector on the r.h.s. is conveniently expressed as 

(10.5,l) 

where 

Denoting the 4 x 4 matrix on the l.h.s. of (5.14,3) by P, we get the 4 x 2 
transfer-function matrix G = P-lQ (10.5,2) 

The elements of G are specifically 

yc,? ' I6 .1  
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In  addition, from the supplementary relations given in (5.14,3) the transfer 
functions for y and yE are 

NUMERICAL EXAMPLE 

The frequency-response functions for the jet transport in horizontal flight 
at  30,000 f t  altitude and CLe = .25 were calculated from the above equations. 
All the aerodynamic transfer functions were replaced by the corresponding 
derivatives, i.e. bVfl = CUR, dzda = Clan etc. Thus we haveneglected terms such 
as s C ~ ~ ~ .  The numerical values are the same ones used in the previous ex- 

. amples. The results for some of the state variables are shown in Figs. 10.11 
and 10.12. Figure 10.11 shows the responses in j3, 4, and r to rudder input. 
The principal feature is the peak at  the frequency of the Dutch roll, which 
because of the relatively light damping of this mode, is substantial. For 
example, a lo rudder amplitude produces about 4 g  j3 amplitude and 6 g  
roll amplitude. At zero frequency j3, p, and r are finite, but 4 and y are infinite. 
That is, the computed steady state associited with rudder input is a constant 
rotational motion w,, = ips, + kr,,. Since the equations were linearized with 
respect to 4 and are therefore not valid for large 4, this steady state is 
spurious. The slopes of the high-frequency asymptotes can be predicted from 
the structure of the general transfer-function matrix. For the given rudder 
input it yields slopes of -1 for j3, r, and -2 for 4. These slopes are reached 
approximately by & = .1 for r and 4, but not for j3. This is because the co- 
efficient of the cubic term in the numerator of CBa, contains the small aero- 
dynamic derivative Cyar. 

Figure 10.12 shows similar results for aileron angle input. The absence 
of the control term CWaa makes the high-frequency asymptote of IG,9sal a 
line of slope -2 instead of - P. 

All the amplitude curves on both figures show a rapid reduction of response 
once the frequency exceeds that of the lateral oscillation mode. 

The sharp dip in IGT6,1 at  h = .0025 is characteristic of a zero in the 
transfer function lying close to the imaginary axis at  this frequency. 

APPROXIMATE LATERAL TRANSFER FUNCTIONS 

In  Sec. 9.7 we presented two approximate second-order systems that 
simulate the complete fourth-order system insofar as the characteristic modes 
are concerned. These same approximations can be used to get approximate 
transfer functions for control response. 



FIG. 10.11 Frequency-Response Functions, rudder angle input. Jet transport cruising 
at high altitude. (a) Sideslip amplitude. ( b )  Sideslip phase. (c) Roll amplitude. (d) Roil 
phase. (e) Yaw-rate amplitude. ( f )  Yaw-rate phase. 
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FIG. 10.12 Frequency-Response Functions, aileron angle input. Jet transport cruising 
at high altitude. (a)  Sideslip amplitude. ( b )  Sideslip phase. (c) Roll amplitude. (6) Roll 
phase. ( e )  Yaw-rate amplitude. ( f )  Yaw-rate phase. 
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Consider first the Dutch-roll approximation (p. 374). Taking the Laplace 
transform gives 

where 

The four transfer functions for j3 and r responses are readily found from 
(10.5,5) to be 

DUTCH-ROLL APPROXIMATION 

where f (s) is the characteristic polynomial (9.7,13). 
For the spiral/roll approximations, we proceed similarly with (9.7,10) to 

solve for the desired ratios. In the following results, the subscripts a and r 
are omitted from the control derivatives since the same formulas actually 
apply to both 6, and 6,. The only difference is that Ya, is usually zero [as in 
(10.5,6)] making the aileron transfer functions simpler than those for the 
rudder. 
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SPIRAL/ROLL APPROXIMATION 

where f ( s )  is the characteristic polynomial (9.7,11) and 

The accuracy of the above approximations is illustrated for the example jet 
transport on Figs. 10.11 and 10.12. Two general observations can be made: 
(1)  the Dutch-roll approximation gives good results for the higher frequencies, 
down to a little less than that of this mode, and (2)  the spiral/roll approxi- 
mation is correct in the low frequency limit. In  this respect the situation is 
entirely analogous to the longitudinal case, with the spiral/roll corresponding 
to the phugoid and the Dutch-roll to the short-period approximation. There 
are ranges of frequency where neither approximation is satisfactory, as on 
Figs. 10.11e and 10.12e. The spiral/roll approximations for the phase angles 
are not shown on Fig. 10.11, since they are reasonable only a t  the lowest 
frequency. For all three variables, b, 4, and P, they increase monotonically 
to about 180' at the highest frequency, whereas the exact phase angles all 
decrease in this range. 

The reader should note that the agreement shown for the Dutch-roll 
approximation is not to be expected generally. We saw in Fig. 9.28 that the 
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damping is not given a t  all well by this approximation at  low speed (high 
CL,). Thus .the approximate solution a t  low speed would substantially 
underestimate the amplitude peaks a t  the frequency of the lateral oscillation. 
We repeat that the lateral approximations must be used with caution, and 
that only the use of the exact equations can guarantee accurate results. 

l0.6 TRANSIENT RESPONSE TO AILERON AND 
RUDDER 

We have seen previously that useful lateral steady states are produced 
only by certain definite combinations of the control deflections. It is evident 
then that our interest in the response to a single lateral control should be 
focussed primarily on the initial behavior. The equations of motion provide 
some insight on this question directly. Following a step input of one of the 
two controls the state variables a t  t = 0+ are all still zero, and from (5.13,20) 
we can deduce that their initial rates of change are (using the compact 
notation) 

Dp = gas 

The initial sideslip rate DB is not of much interest, but the rotational accel- 
erations are. From the last two equations 

and for t + 0, & = (iZ8 + kN,)t'6 (10.6,2) 

Thus the resultant angular velocity vector, and hence the initial instantaneous 
axis of rotation, lie in the plane of spnmetry as illustrated in Fig. 10.13. 
Let us investigate the angle 5 that o makes with the x axis for the two cases 
of "pure" controls, i.e. when only one of C,, or C,, is not zero. For the roll- 
control case, C,, = 0 and 

From the definitions given in (5.13,20), (10.6,3) becomes 

tan tR = 
1 ,  

and is zero if I,, = 0, i.e. if Cx is a principal axis. This is just as expected, 
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FIG. 10.13 Initial response to lateral control. (a) General. ( b )  Example jet transport. 

of course, that a moment applied about a principal axis produces rotation 
about that axis. When I,, is not zero, we get from (5.4,ZOb) 

(IZ, - I.,) sin E cos E 
tan tR = 

I,, cos2 E + I,, sin2 E 

Similarly for the pure yaw control, C18 = 0 and 

cos2 E + I,, sin2 E 
tan tP =Ix' (10.6,5) 

(IZ, - 1,') sin E cos E 

These angles are seen to depend on the relative inertias about the principal 
axes, as well as on E. For example, if Ixp = .4IZp, as is roughly the case for 
the jet transport we have been considering, then lR and tp are as on Fig. 
10.14. The relations are shown to scale on Fig. 10.13b for E = -20' (high 
angle-of-attack case). It is observed that there is a tendency for the vehicle 
to rotate about the principal x axis, rather than about the axis of the aero- 
dynamic moment applied. This comes about because IZD/Izp is appreciably 
less than unity. The jet transport is a relatively high-aspect-ratio machine 
with wing-mounted engines, and would by no means be considered a "slender" 
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106 
control 

FIG. 10.14 Angle of axis of rotation. 

vehicle. For vehicles that are slender, such as the SST or a slender missile, the 
trend indicated above is very much accentuated. In  the limit I,9 -+ 0, both 
(10.6,4) and (10.6,5) give the limit 

tan = tan E 

which indicates that the vehicle will initially rotate about its principal x 
axis no matter what the direction of the applied-moment vector. If this 
rotation were to persist through 90°, then P would be equal to and or would 
be reduced to zero. The above analysis tells us how the motion starts, but 
not how i t  continues. For that we need solutions of the complete system 
equations (5.13,20). Solutions for the example jet transport a t  CL, = .25 a t  
30,000 f t  altitude were obtained by analog simulation of these equations, 
and the results for /3, $, 4, and y are shown on Figs. 10.15 and 10.116. Figure 
10.15 shows the response to negative aileron angle (corresponding to entry 
into a right turn). The main feature is the rapid acquisition of roll rate, 
and its integration to produce bank angle +. The maximum roll rate is achieved 
in about I& sec, and a bank angle of about 25' a t  the end of 6 see. Because of 
the aileron adverse yaw derivative, O > 0, the initial yawing moment 

ns. 
is negative, causing the nosc to swing to the left, with consequent negative 
y and positive /3. The positive /3, via the dihedral effect OZB < 0 produces a 
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negative increment in C,,  opposing the rolling motion. More than 4 see 
elapse before the nose swings into the desired right turn. 

Figure 10.16 shows the response to a negative (right) rudder angle of the 
same magnitude as the aileron angle on Fig. 10.15. This causes the nose to 
swing rapidly to the right, ,6 being initially roughly equal and opposite to y 
indicating virtually no change in the direction of the veloeity vector. The 
result of ,6 < 0 (because of C ,6) is a positive rolling moment and positive 4. 

Right rudder, like right aileron, is seen to produce a transition into a 
turn to the right, but neither does so optimally. A correct transition into a 
truly banked turn requires the coordinated use of both controls, and if 
there is to be no loss of altitude (see Sec. 10.4) of the elevator as well. 

An approximation to the 4 response to 6, can be obtained from the single- 
degree-of-freedom roll analysis corresponding to (9.7,7). With the aileron 

Approx. 

FIG. 10.15 Step response t o  aileron input. 6,  = -2.87". 
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F I ~ .  10.16 Step response to rudder input. 6, = -2.87'. 

term included this becomes 

The solution of (10.6,6) for zero initial conditions is 

This result is compared with the exact solution on Fig. 10.15 and is seen to 
give a good approximation to 4 over the most important first few seconds. 
This simple analysis supplies a useful criterion for roll control. It yields as 
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the steady-state roll rate, 

A requirement on $,, for a given vehicle then leads to an aileron design to 
provide the necessary C, 8,. 

6 ,  

10.7 INERTIAL COUPLING IN  RAPID MANEUVERS 

There is a class of problems, all generically connected, known by names 
such as roll resonan.ce, spin-yaw coupling, inertia coupling, etc. (refs. 10.1 to  
10.9). These have to do with large-angle motions or even violent instabilities 
that can occur on missiles, launch vehicles, reentry vehicles, and aircraft 
performing rapid rolling maneuvers. The common feature of all these is 
that the vehicles tend to be slender, and that rapid rolling is present. In  
some of the situations that have occurred in practice, complicated nonlinear 
aerodynamics, and mass and configurational asymmetries have been im- 
portant factors in determining the motion. This subject as a whole is too 
large for anything approaching a comprehensive treatment to be given here. 
However, we present some analysis that reveals some of the underlying 
principles, and by way of an example show what can happen in rapid rolling 
maneuvers of aircraft. 

Let us begin by examining a very simple hypothetical case. The body 
in question is axisymmetric with Ig > I,. Its reference flight condition is 
one of constant V and o, both these vectors lying on the axis of symmetry, 
the x axis. We neglect gravity entirely, and study small perturbations around 
the reference state. The perturbations are further constrained not to include 
either V or the roll rate, which remain constant a t  V, and p,, respectively. 
We further assume that the only aerodynamic effects are pitching and yawing 
moments given by 

Because of the axisymmetry, C = -Cmm and C,, = Cmo. Since the essence 
nfl 

of this problem is nonlinear inertia coupling between the longitudinal and 
lateral degreesof freedom, we require the general equations (5.13,s) to (5.13,12) 
for the formulation. In  applying the equations we take both the reference 
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lengths b and E to be equal to a reference diameter d, so that A = 1. There 
are then four variables left in the problem, [a, /3, $, $1, so we need four 
equations of motion. These are provided by (5.13,93 and c) and (5.13,lla 
and b) .  I n  using the latter two we note that (5.13,86 and c) show that gw 
and Fw are zero by virtue of the neglect of gravity and aerodynamic forces. 
(Since the net force is zero, V is a constant vector, and the wind axes have 
motion of translation only.) The pertinent equations are then, on making 
due allowance for the axisymmetry, 

Dp = $,, sin u - F cos u 

On combining (10.7,l) with (10.7,2) and performing the usual linearization, 
the result is (using Laplace transforms of the equations) 

Now we recognize that we are dealing here with the problem of gyrostability. 
At very large roll rates, we expect the body to display typical gyroscopic 
motions that will depend mainly on the signs and magnitudes of Cmm and 
Cmv. At vanishingly small roll rates, the equations decouple into conventional 
lateral and longitudinal sets, in which the sign of Cma (i.e. of the pitch stiffness) 
is a dominant consideration-for Cma and Cmq both <0, a stable system is 
assured. We know that even if Cma > 0, gyroscopic stability (in the sense 
Lbat motions are bounded) is achieved a t  large enough spin rates. This is in 
fact the method of stabilizing rifle bullets and artillery shells. It is therefore 
intuitively evident that there must be a critical roll rate for the case Cma > 0 
above which the vehicle is stable-just like the critical spin rate for a common 
top. On the other hand there is no such intuitive notion about the case when 
Cma < 0, i.e. when the system is already stable a t  zero spin-the common 
case in aerospace (as opposed to ballistic) applications. 

To study the stability we need the characteristic equation of (10.7,3), 
which is of fourth order 
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where c4 = I,2 

c, = -21,Cmg 

C2 = -2i,cma + do2f2 + Gmp + ( i ,  - iX)2$,2 (10.7,4) 

= 2CmaGm, - 2$02~ma-f, 

s = [(I,  - fxw + GmaI2 + 6,: 
Unfortunately, even with all the simplifications already made, this equation 
is still rather too complicated to permit us to say anything simple about the 
roots. We therefore make a further simplification, and take Gma = 0. We 
then have 

A 2 
C4 = I, 

c, = 0 
- A 2 A  

2 - PO + (1, - f x ) 2 ~  - 2fycma 

whence 

WHEN Cma > 0 (AERODYNAMICALLY UNSTABLE CONFIGURATION) 

In this case c, and co are positive definite whereas c2 changes sign from 
negative to positive as p, increases. The only possibility for stable roots is 
l2 < 0, in which case is imaginary, corresponding to gyroscopic motion. 
If I2 is real and positive, or complex, there will be at least one root with a 
positive real part. Thus the conditions to be met are X 2  real and <0, for 
which it is necessary and sufficient that cZ2 > 4cOc4. The roll rate required 
for stability is then given by 

WHEN Cma < 0 (AERODYNAMICALLY STABLE CONFIGURATION) 

In this case c2 and c, are positive definite and it is co that can change sign. 
The condition (10.7,6) still holds, but because Gma is now negative, it is 
automatically satisfied. However, the condition that a2 be negative now 
requires that co be positive. So for this case the criterion for do is obtained 
from co > 0, i.e. 

[($ti - ix) + cma] > 0 (10.7,7) 
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Condition (10.7,7) is met for all values of $io2 except one, a t  which the 1.h.s. = 
0. There is thus one roll rate a t  which the system has "neutral" stability, i.e. 
for which there is a zero root. The critical value is 

To summarize, we have seen that an aerodynamically unstable configu- 
ration can be stabilized by spinning i t  fast enough, and that at  a certain 
critical roll rate an aerodynamically stable configuration becomes neutrally 
stable. The source of these phenomena is the inertia effects given by the rp 
and qp terms in the pitching and yawing moment equations. They can be 
thought of as gyroscopic moments associated with high roll rate. Phillips 
(ref. 10.1) has analyzed a more general case, in which the vehicle is not 
axisymmetric, and in which aerodynamic forces as well as moments are 
retained, i.e. an airplane configuration. In  this case he found that there is a 
band of roll rates within which the vehicle is unstable, the lower critical 
one being given approximately by the lesser of 

[compare with (10.7,8)]. 
For the jet transport of our examples, with Cma = -.488 the critical rate 

would be = .112, corresponding to the first of the two criteria. From 
(10.6,8) this vehicle, a t  6, = 20°, achieves $is, = .0528, a value considerably 
less than the critical, and hence one would not anticipate any difficulties for 
this airplane arising from nonlinear inertia coupling. 

Since the rolling motion may be thought of in a sense as providing a 
periodic excitation of the uncoupled longitudinal and lateral oscillations, 
it proves convenient to look a t  stability boundaries in the plane of the two 
uncoupled frequencies. This idea was first used by Phillips. The result is 
typically like that in Fig. 10.17, the exact boundaries depending mainly 
on the dampings of the two oscillations. A vehicle conventionally stable in 
nonrolling flight would be represented by a point in the upper right quadrant, 
the exact position being determined by p,. As p, increases, the point moves 
radially toward the origin. If i t  follows a line like A, there will be no instabil- 
ity; but if like 3, there is an unstable range of p, separating two stable 
regions as found by Phillips. A vehicle that is statically unstable in both pitch 
and yaw when nonrolling will correspond to a point in the lower left quadrant, 
and can be stabilized by a large enough p, (line C). 
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FIG. 10.17 Form of stability boundaries for rolling vehicle. wv = frequency of yaw - 
oscillation, Z/N~/I, oe = frequency of pitch oscillation, ~-M,/I~. 

NUMERICAL EXAM PLE-PITCH/ROLL COUPLING OF 
A SMALL AIRPLANE 

To show how the nonlinear inertia terms can affect the motion of an 
airplane we consider a small maneuverable single-engined jet airplane. Its 
principal characteristics are 

W = 6000 Ib, X = 216 ft2, A = 6.0 
b = 36.0 ft, F = 6.0 ft 
I, = .i70 x lo4 slug ft2 
I, = .120 x lo5 ft2, I,, = o 
I~ = .i40 x lo5 slug ft2 

Note that Iz/I, is only .121, as compared with about .4 for the transport 
airplane. The pertinent aerodynamic data for flight at  500 fps at  sea level 
are given as 
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The value of calculated from (10.7,9) is .0796. I n  applying the general 
nonlinear equations, we assume that Am, ,!I, remain small, that linearization 
is permissible with respect to them, and that the speed is constant. 

With these assumptions, (5.13,8) et seq. yield the following system of 
equations. 

-CT,@ - Cc + CW cos Ow sin +w = 2,uAr ,̂ 

-CT,A u - CL + CW cos OW cos +W = - Zpi j  w 

+ w = @ + i jW tan Ow sin f iw + -tan Ow cos +w 
A A 

The logical structure of these is essentially as in Fig. 5.6. 
The above equations were programmed for solution on a digital computer, 
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using a Runge-Kutta algorithm for solving differential equations. Solutions 
were obtained for two different sets of conditions: 

(i) Initial condition of rolling a t  rate pi, with all other initial values zero, 
with 16,1 a t  2', and with 6, set a t  the value required to make p,, = pi 
[see (10.6,8)]. Thus the initial value of @ would be zero, producing a 
condition somewhat like that of Phillip's analysis. 

(ii) All initial values zero, with a pitch maneuver initiated by elevator 
elevator deflection a t  t = O and a subsequent roll maneuver super- 
imposed by a step change in 6,. 

Figure 10.18 shows the angle of attack variation in the first case, (a) for 
pitch-up and (b) for pitch-down. A striking result is the difference between 
positive and negative elevator angle, a difference that results entirely from 
the nonlinearity of the equations. Even for very large aileron angles, there 
is no evidence in (a) of instability, and only for the case of 16,1 = 14.7' does 
ha become momentarily excessive. On the other hand case (b)  develop 
excessive Au quite suddenly when 16,1 goes from 4.2 to 6.3'. The difference 
in behavior in these two cases is largely attributable to the difference in the 
roll-rate time histories, which in turn results from the fact that /I > 0 in 
(a) and /I < 0 in (6). (The roll rate results are not presented on the 
figures. The following comments are based on thc computer output.) 
In  the case $i = .060, 6, = 2.0°, $ f i s t  decreases slightly, then increases 
with time as a result of rolling moment due to side-slip, erossing over the 
critical value .0796 a t  about .8 sec, and remaining larger till the end of the 
calculation. Very soon after $ exceeds Au starts to increase rapidly. 
On the other hand, for $i = .040, $ never reaches the critical value, and 
Act is "well-behaved." In  Fig. 10.18a, $i = .140, the rolling moment due to 
sideslip is negative and decreases the roll rate so that i t  falls below the 
critical value at  t = 2.6 see. This is again compatible with the reduction 
in Au that occurs a t  about the same time. It appears that the critical roll 
rate derived by Phillips is a very useful criterion for a "well-behaved" 
transient. 

Figure 10.19 shows the variation of h u  for the second case, which is a 
realistic maneuver, resulting after 5 see in a pitch-up (or down) of about 20°, 
and a roll when 6, = 8" of about If revolutions. Again the lack of symmetry 
between pitch-up and pitch-down is clear, the latter being the unfavorable 
case for a roll to the left. The difference between Aa for 6, = 4' and 6, = 8O 
or 10' is striking. I n  the former case the detailed solution shows p < perit 
for the whole time, whereas the latter two have p > pcrit almost 
from the onset of the rolling motion. For the pitch-up case as well, 
perit is exceeded for 6, = 12" and 18', but not for 6, = 6". 
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t, sec 
fa) 

FIG. 10.18 Variation of Au during rapid roll. (a) Pitch-up case, 6, = -2.0". (b )  Pitch- 
down case, 6, = 2.0". 
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of the word "stability" in describing the solutions, using "well-behaved 
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t, sec 

(c) 

FIG. 10.19 Variation of angle of attack in a combined pitch/roll maneuver. 

t considered). Furthermore, the stability in that sense is actually irrelevant 
(see closing remarks of Sec. 3.5). Whether or not the maneuver is an accept- 
able one is governed entirely by the size of the Aa and AS excursions that 
can be tolerated without structural failure or loss of control and not by the 
theoretical stability of the solution. 
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C H A P T E R  II 

I!.! GENERAL PRINCIPLES 

Although open-loop responses of the kind studied in some depth in Chapter 
10 are very revealing in bringing out inherent vehicle dynamics, they do 
not in themselves usually represent real operating conditions. Every phase 
of the flight of an aerospace vehicle can be regarded as the accomplishment 
of a set task-i.e. flight on a specified trajectory. That trajectory may simply 
be a straight horizontal line traversed at  constant speed, or it may be a 
turn, a transition from one symmetric flight path to another, a landing flare, 
following an ILS or navigation radio beacon, homing on a moving target, 
etc. All of these situations are characterized by a common feature, namely, 
the presence of a desired state, steady or transient, and of departures from it 
that are designated as errors. These errors are of course a consequence of 
the unsteady nature of the real environment and of the imperfect nature of 
the physical system comprising the vehicle, its instruments, its controls, and 
its guidance system (whether human or automatic). The correction of errors 
implies a knowledge of them, i.e. of error-measuring (or state-measuring) 
devices, and the consequent actuation of the controls in such a manner as  
to reduce them. This is the case whether control is by human or by automatic 
pilot. In the former case, the state information sensed is a complicated blend 
of visual and motion cues, and instrument readings. The logic by which this 
information is converted into control action is only imperfectly understood, 
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but our knowledge of the physiological "mechanism" that intervenes between 
logical output and control actuation is somewhat better (see Chapter 12). 
I n  the latter case-the automatic control-the sensed information, the control 
logic, and the dynamics of the control components are usually well known, 
so that system performance is in principle quite predictable. The process of 
using state information to gotern the control inputs is known as closing the 
loop, and the resulting system as a closed-loop control or feedback control. 
The terms regulator and servomechanism describe particular applications of the 
feedback principle. Figure 3.5 shows a general block diagram describing the 
feedback situation. In the present context we regard y as thestatevector, H ( s )  
as an operator (linear in the figure, but of course not necessarily so) and E: as 
the control vector. Clearly, since real flight situations virtually always entail 
closed-loop control, a study of the consequences of closing the loop is in order. 

Another factor that cannot be separated from these referred to above 
is the force amplification or power amplification common in the control 
systems of large aircraft. As noted in Sec. 6.8, the control forces needed on 
large high-speed aircraft may exceed the capabilities of human pilots. Thus 
another dynamic system-powered controls-intervenes between the pilot 
and the aerodynamic surfaces. Such subsystems are themselves commonly 
servomechanisms-closed-loop systems that drive the surfaces in response 
to pilot commands. Thus we are frequently concerned with "loops within 
loops," a very common situation. For example, the "outermost" loop might 
be a guidance loop that controls the error in vehicle position relative to an 
ILS beam. An inner loop might be a stability augmentation system (treated 
later in Sec. 11.4) whose purpose is to improve the inherent lateral dynamics 
of the vehicle and, finally, within this one there may be still another loop 
associated with the control-surface servo. 

Although flight dynamicists (who usually come from an aerospace engi- 
neering background) and control engineers (who frequently have a back- 
ground in electrical engineering) usually communicate adequately on 
problems of mutual concern, there is often understandably some difference 
in their points of view. This is illustrated somewhat facetiously in Fig. 11.1. 
At one extreme, the control engineer may overemphasize the many elements 
that comprise the control system, and tend to minimize the role of the 
dynamics of the vehicle itself-perhaps replacing all its rich and varied detail 
with oversimplified approximate transfer functions. At the other extreme, the 
flight dynamicist may substitute some simple algebraic relations for the 
entire control system. Neither extreme is right for the final solution of real 
problems, but both may have their merits for certain purposes. We naturally 
tend here to the flight dynamicist's view of the system in the illustrations 
that follow. For example, i t  is sometimes very helpful to consider the loop 
closure as simply modifying some of the existing aerodynamic derivatives, or 
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( b )  
FIG. 11.1 Closed-loop control-two extreme views. (a) The control engineer's viewpoint. 
( b )  The flight dynamicist's viewpoint. 
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adding new ones. Specifically let y be any nondimensional state variable, 
and let a control surface be displaced in response to this variable according to 
the law 

A6 = k A y  ; k = const 

- Equalizers +- 

A - - 

(Here k is a simplified representation of all the sensor and control system 

Amplifiers Control servos 

Equalizers 

dynamics!) Then a typical aerodynamic force or moment coefficient Ca will 
be incremented by 

ACa = Ca6 Ad 

This is the same as adding a synthetic increment 

AC,, = kca6 (ll.l,2) 

to the aerodynamic derivative Caw. Thus if y be yaw rate and 6 be rudder 
angle, then the synthetic increment in the yaw-damping derivative is 

dynamics 

t- Sensors 

which might be the kind of change required to correct a lateral dynamics 
problem. This example is in fact the basis of the often-applied "yaw damper," 
a stability-augmentation feature. Again, if y be the roll angle and 6 the 
aileron, we get the entirely new derivative 

/ 

Cz+ = kcla, (11.1,4) 
the presence of which can profoundly change the lateral characteristics. 

- 
Airframe 



Closed-loop control 455 

SENSORS 

We have already alluded to the general nature of feedback control, and 
the need to provide sensors that ascertain the state of the vehicle. When a 
human pilot is in control, his eyes and kinesthetic senses, aided by the stand- 
ard flight information displayed by his instruments, provide this information. 
(In addition, of course, his brain supplies the logical and computational 
operations needed, and his neuro-muscular system all or part of the actua- 
tion.) In  the absence of human control, when the vehicle is under the 
command of an autopilot, the sensors must, of course, be physical devices. 
As already mentioned, some of the state information needed is measured 
by the standard flight instruments-air-speed, altitude, rate-of-climb, 
heading, etc. This information may or may not be of a quality and in a form 
suitable for incorporation into an automatic control system. In  any event 
it is not generally enough. When both guidance and attitude-stabilization 
needs are considered, the state information needed may include : 

Position and velocity vectors relative to a suitable reference frame. 
Vehicle attitude (8 ,  4) .  
Rotation rates ( p ,  q, r).  
Aerodynamic angles (a, P). 
Acceleration components of a reference point in the vehicle. 

The above is not an exhaustive list. A wide variety of devices are in use to 
measure these variables, from Pitot-static tubes to sophisticated inertial- 
guidance platforms. Gyroscopes, accelerometers,magnetic andgyro compasses, 
angle-of-attack and sideslip vanes, and other devices all find applications as 
sensors. The most common form of output is an electrical signal, but fluidic 
devices (ref. 11.1) are increasingly receiving attention. Although in the 
following examples we tend to assume that the desired variable can be 
measured independently, linearly, and without time lag, this is of course 
an idealization that is only approached but never reached in practice. 
Every sensing device together with its associated transducer and amplifier 
is itself a dynamic system, with characteristic frequency response, noise, 
nonlinearity, and cross-coupling. These attributes cannot finally be ignored 
in the design of real systems, although one can usefully do so in preliminary 
work. As an example of cross-coupling effects, consider the sideslip sensor 
assumed to be available in the stability augmentation system of Sec. 11.4. 
Assume, as might well be the case, that i t  consists of a sideslip vane mounted 
on a boom projecting forward from the nose. Such a device would in general 
respond not only to j3 = sin-l ( v /V )  but also to atmospheric turbulence 
(side gusts), to  roll and yaw rates, and to lateral acceleration a,  a t  the vane 
hinge. Thus the output signal would in fact be a complicated mathematical 
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function of several state variables, representing several feedback loops, 
rather than being simply proportional to P as assumed in the example. 
The objective in sensor design is, of course, to minimize all the unwanted 
extraneous effects, and to provide sufficiently high frequency response and 
low noise in the sensing system. 

This brief disoussion serves only to draw attention to the important design 
and analytical problems related to sensors, and to point out that their real 
characteristics, as opposed to their idealizations, need finally to be taken 
into account in design. 

1 1.2 EXAMPLE-SUPPRESSION OF THE PHUGOlD 

The characteristic lightly damped, low-frequency oscillation in speed, 
pitch attitude, and altitude that was identified in Chapter 9, was seen in 
Chapter 10 to lead to large peaks in the frequency-response curves (Fig. 10.3) 
and long transients (Figs. 10.6 and 10.7). Similarly, in the control-hed 
case, there are large undamped responses in this mode to disturbances such 
as atmospheric turbulence (see Chapter 13). These variations in speed, height, 
and attitude are in fact not in evidence in actual flight; the pilot (human or 
automatic) effectively suppresses them, maintaining flight a t  more or less 
constant speed and height. The logic by which this process of suppression 
takes place is not unique. In principle i t  can be achieved by using feedback 
signals derived from any one or a combination of pitch attitude 0, altitude 
zE ,  speed V, and their derivatives. In practice, the availability and accuracy 
d the state information determines what feedback is used. We shall see that 
a simple negative feedback of pitch attitude suffices effectively to eliminate 
the phugoid. Pitch attitude is instantly and accurately available from either 
the real or artificial horizon. We shall also see that operating on speed error 
can produce pitch maneuvers free of phugoid oscillations. 

Consider the system shown in Fig. 11.2, in which Oc is the pitch command, 

FIG. 11.2 Phugoid suppression system. 
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G,(s) is the overall transfer function of the control system, and g is a dis- 
turbance (gust) input. The pitch attitude is given by 

e = c o g s  + Go, 6, (11.2,l) 

and we readily find the overall transfer functions 

The stability with respect to 6, or g inputs is given by the roots of the char- 
acteristic equations of these two overall transfer functions. So long as 8, and 
g are both inhomogeneous inputs to the linear aircraft system, i t  can be 
seen that the denominators of Go, and Go, are the same, each being the char- 
acteristic polynomial det (sH - A) (see Sec. 3.2). Thus we may write 

where N,, N,, D are polynomials in s, and the overall transfer functions are 

The poles of these transfer functions, which are the roots of the characteristic 
equations, will be the same if G,N, and N2 have no poles (or the same poles), 
and in that case the stability with respect to gust inputs will be the same as 
&hat for pitch command inputs. A reasonably general form for G,(s) for 
this application is 

For obvious reasons, the three terms on the r.h.s. are called, respectively, 
integral control, proportional control, and rate control, because of the way they 
operate on the error E .  The particular form of the controlled system, here 
Go,(s), determines which of k,, k,, k ,  need to be nonzero, and what their 
magnitudes should be for good performance. Integral control has the char- 
acteristic of a memory, and steady-state errors cannot persist when i t  is 
present. Rate control has the characteristic of anticipating the future values 
of the error and thus generates lead in the control actuation. It turns out 
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that all we need here is proportional control, so we choose GJs) = K, a 
constant, and the characteristic equation is 

To proceed further, we need explicit expressions for Nl and D. We saw in 
Sec. 10.2 that the phugoid approximation to Goa is quite good up to elevator 
frequencies near that of the short-period mode. Since we may expect that 
the elevator frequency needed to suppress the phugoid is of the same order 
as the control-fixed phugoid frequency, we may use (10.2,15b) in this analysis 
(and this is verified a posteriori). We therefore have 

Approximate expressions, good enough for this example, are obtained from 
(10.2,15b) by neglecting cLa and assuming cTr = -2cDa and CDe< < CLa. 
We then get 

C1 = 4,uCD, 
2 co = 2cw, 

The characteristic equation is, from (11.2,5) and (11.2,6), 

and the feedback is seen to affect every term in the equation. We also observe 
that the numerator of the open-loop transfer function GrgS plays a decisive 
role in determining the characteristics of the closed-loop system. 

The frequency and damping of the system are now obtained from (11.2,9) 
as 
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where on = (co/c2)x and 25 = c,/ Jc,c, are the fixed-control phugoid 
parameters. Us'ing the data for the jet transport cruising at  30,000 f t  altitude 
given in Sec. 9.1, and C,, = Cma we get the numerical values 

from which 

Even with small gain K the damping of the phugoid is very much increased. 
The original value was 5 = .0535, so to produce a dead-beat transient for 
which 5 = 1, we require &"I< = 18.7, which is produced by a gain -K = .17. 
Note that the gain is negative, since a positive error E indicates the nose is 
too low, and up-elevator (6, < 0 )  is required to correct. With the gain needed 
for = 1.0, we get wb/on = 1.07, so the frequency has been increased by 
only 7%, and the phugoid approximation for Go, is clearly adequate. 

This calculation shows how a human or automatic pilot could eliminate 
the phugoid oscillations quite simply, using readily available state information. 
The exact control law by which a human pilot actually achieves this result 
may in fact be somewhat different from that assumed here, but i t  is probable 
that 0 is the prime variable on which he operates. 

CHANGE OF FLIGHT-PATH ANGLE 

The phugoid makes its presence known not only in the form of transient 
perturbations from a steady state, but also in maneuvers, as illustrated in 
Sec. 10.3. We saw there for example that in changing from level to climbing 
flight by opening the throttle (Fig. 10.7) there results a protracted, weakly 
damped approach to the new state that would take some 10 min to complete. 
Transitions from one value of y to another are obviously not made in this 
manner, and the pilot suppresses the oscillation in this case as well. Provided 
that the correct 0 is known for the climb condition, the same technique as 
discussed above would work, i.e. proportional control operating on pitch- 
attitude error. We illustrate an alternative concept that does not require any 
knowledge of the final correct pitch attitude, but that uses speed error alone. 
Figure 11.3a shows the system. I n  this case it is found that proportional 
control is not adequate-it serves mainly to shorten the period of the oscil- 
lation, but has little effect on the damping. To improve damping needs rate 
control, so the control law used is 
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FIG. 11.3 (a) System with speed feedback. ( b )  Suppression of phugoid by closed-loop 
control-response to thrust change. 
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where D(s) is given by (11.2,6) and (11.2,8) and 

The characteristic equation [cf. (11.2,5)] is 

D(s) + (kl + k,s)fl3(s) = 0 
which becomes 

The new characteristic equation is again second order, being the sum of 
the original one and additional terms. When the signs of the quantities 
in (11.2,14) are taken into account, the modifications to the three original 
coffiecients can be summarized thus 

c,: increased by amount proportional to k, 
c,: increased by amounts proportional to k, and k, 
c,: increased by an amount proportional to k, 

Since there are two free constants, k, and k,, we can analytically satisfy two 
conditions by means of (11.2,15)--one on the period, and one on the damping 
of the closed-loop system. This procedure is fairly obvious, and is not elabo- 
rated on here. The values of the constants finally chosen have to be con- 
strained of course by practical considerations related to sensor and control 
hardware limitations. Finally, the approximate analysis has to be verified 
with the complete system of equations. As an example, Fig. 11.3 shows the 
response to a step input of thrust obtained using analogue computation of 
the full system of equations. The constants used were 

The first corresponds to a deflection of .172" per 1 % change in speed, and 
the second to 25.3" per g of forward acceleration. The airplane and flight 
condition of the figure are the same as those for Fig. 10.7. The dashed lines 
show the beginning of the phugoid response that would exist without feed- 
back. This would take about 10 min to decay. The solid lines show the 
response with feedback, and we see that for all practical purposes the 
transition is completed smoothly and rapidly-within about 15 see. There 
is a small overshoot in y, and small errors in Ap and Ad that die out rather 
slowly. This feature could be eliminated a t  the cost of some additional 
complexity by introducing some integral control. The elevator angle variation 
required to accomplish the transition is seen to consist of an initial step 
(up-elevator) followed by a gradual reduction of the deflection. The conditions 
near t = 0 are, of course, somewhat artificial because of the step input used. 
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A gradual thrust increase would have resulted in a gradual deflection of the 
elevator. It should be noted that the error in A v ,  the primary quantity 
sensed, is indeed kept quite small. The role of Aa is worth commenting on. 
At the scale of the figure, there is practically no a change in the open-loop 
case within the time span shown. The "pulse" in a in the closed-loop case 
clearly has the effect of producing a corresponding pulse in lift that rotates 
the velocity vector through the required angle. 

Finally, it should be observed that in theory a human pilot has all the 
state information that we have assumed was available. V and could be 
obtained from an airspeed indicator, and additional information about r 
can be felt as an inertia force (a "seat-of-the-pants" input). An autopilot 
could readily have AV supplied in electronic form by a conventional trans- 
ducer, but r would be somewhat more troublesome. The two principal 
alternatives would be differentiation of V, or an acceleration signal from an 
inertial platform. 

1 1.3 EQUATIONS OF MOTION OF THE CONTROL 
SYSTEMS 

Up to this point in our development of the subject we have not found 
i t  necessary to consider the dynamics of the vehicle's control systems per se, 
although the omission of this feature was pointedly noted in the previous 
section. In  fact the dynamics of control systems not only enter into closed-loop 
behavior but are also implicit in the stability of vehicles with free controls. 
When the controls are reversible (i.e. when an external force applied a t  the 
surface can cause i t  to move), the stability with free controls may be appreci- 
ably different from that with fixed controls. This case can be thought of in a 
sense as belonging to the feedback class of control problems, since the control 
angles are then governed by certain inherent aerodynamic and inertial 
feedbacks. 

The wide variety of control system types and configurations in common 
use, and the variability of the schemes used to provide power or force 
amplification make i t  virtually impossible to present a universal analysis 
of any use. We therefore select one hypothetical model of a control system, 
and show how its equations of motion are derived. Generally speaking, a 
similar procedure would apply to other cases. The model is that depicted 
in Fig. 11.4. It consists of a rigid elevator surface, connected by a rigid 
frictionless linkage to the pilot's control and to a hydraulic jack. The airframe 
structure to which the system is attached is also assumed to be rigid. The 
external forces acting are the pilot control force P, the jack force J, and the 
aerodynamic hinge moment He. Gravity is neglected since i t  is essentially 
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FIG. 11.4 A hypothetical elevator system. 

a constant that only affects the equilibrium position slightly. The system 
has two degrees of freedom relative to the frame PB, i.e. 6,  and B J .  The 
control system shown represents a power assisted elevator, and does not in- 
corporate explicitly any provision for closed-loop positioning of the elevator. 
This would require a somewhat different physical arrangement, and its 
governing equation would be different from that derived below. 

We obtain the equations of motion by applying Lagrange's equation 
(5.12,3), the procedure being somewhat analogous to that used in Sec. 5.12. 
In  this application, since rigidity has been assumed, the strain energy U is 
zero. E ,  stands for either 6,  or B J ,  so that there are two equations of motion. 
As in Sec. 5.12 the generalized force 9-, must include the inertia forces 
associated with acceleration and rotation of the reference frame FB. 

THE KINETIC ENERGY T 

The kinetic energy of the moving masses (elevator, levers, pistons, rods, 
etc.) can for small displacements always be expressed in the form 

The coefficients of this equation are generalized inertias, and could be com- 
puted by integrating the energy associated with 8, and 6 over all the moving 
material system. These inertias are assumed to be constants. 

THE GENERALIZED FORCE 9, 

The generalized force is given by (5.12,8), where W is the work done by 
the external aerodynamic and inertia forces during a virtual displacement 
of the system. Let i t  be expressed as 

where sp and sJ are the displacements of the forces P and J respectively, 
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and W i  is the work done by the inertia forces. Thus 

aw -- asp as, aw. 
- H e + P - + J - + - z  

ase as, as, as, ( a )  

aw asp as, aw, (11.3,3) 
-- - P - + J - + -  
ae, ae, ae, ae, (4 

The kinematic derivatives asp/i3s,, etc., are simple constants, readily deter- 
mined from the geometry of the linkage. 

We now require the derivatives of W,. The inertia force field is given by 

df, = - ( a  - r') dm (11.3,4) 

where a is acceleration of dm relative to FI given by (5.1,8) and r' = [a, y, zlT 
is its position vector in FB. The work done in a virtual displacement by this 
field is 

where the integration is taken over the whole control system. To carry out 
this integration exactly clearly requires complete information about the 
masses, sizes, and locations of all the moving elements. It is in principle a 
straightforward albeit tedious process. In the interests of simplicity we 
neglect all contributions to W ,  except those of the elevator surface itself, 
and that we treat as a lamina lying in the xy plane. The relevant geometry 
is shown in Fig. 11.5. The displacement of the element dm is in the direction 
C z  and of magnitude l As,. Hence only the last term of (11.3,5) is nonzero, 
so that 

A w ,  = df,$ Ad, S 
On using (11.3,4) and (5.1,8), remembering that x = 2 = y = 0, we get 

It follows that 

aw. 
2 = - a o g p  dm - ( p r  - p)  x dm - (qr + @) yb dm (11.3,7) 
as, S S 

Since elevators are normally symmetric about C x ,  the last integral of (11.3,7) 
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FIG. 11.5 Horizontal tail. 

vanishes. The first is, by virtue of the definition of mass center, 

where m, is the mass of both elevators, and e, is as shown in Pig. 11.5. The 
second integral is the produet of inertia of the elevator w.r.t. its hinge line 
and the y axis. It is denoted 

J xt dm = P,, 

Equations (P11.3,7) now read 
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and finally, on combining (11.3,10) and (11.3,3) we get the generalized forces 

where [k,J is the matrix of kinematical gearings asplade, etc. 

EQUATIONS OF MOTION 

The equations of motion are obtained by substituting the generalized 
forces and the kinetic energy in Lagranges equations, i.e 

The inertia terms on the r.h.s. of ( a )  are the only nonlinear ones, and in 
view of the assumptions already made, linearization of these is in order. 
a,* is the z component of the acceleration of the vehicle mass center and is 
given by (5.3,18). Without the Earth rotation terms, and for small distur- 
bances, we get 

a,= = w - qu 

From (4.3,4), in the linear case, w = Va,  and u = V ,  so that the linear 
expression for the acceleration is 

a,. = Ve& - qVe 
and (11.3,12) become 

Ie Je + I ,  j o j  = He + kllP + k12J - rn,e,V,(& - q)  + P,,Q (a )  

These equations, when combined with the vehicle equations of motion, 
convert 6, from a nonautonomous to an autonomous variable, add OJ to 
the autonomous set, and introduce P and J as nonautonomous variables. 
The aerodynamic force He is a function of the state variables, i.e. [cf. (6.5,2)] 
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and provides aerodynamic coupling (feedback) between the vehicle motion 
and the control force. Similarly the terms containing u and q in (11.3,13a) 
provide inertial coupling between vehicle and control dynamics. 

INERTIAL COUPLING 

Although little can be done to influence the aerodynamic coupling, the 
inertial coupling is amenable to control by design. If the elevator mass 
center is on the hinge line, e, = 0 and one coupling term vanishes-i.e. 
acceleration in the z direction will then not tend to induce motion of the 
control. With reference to Fig. 11.5, we can calculate P,, as follows 

P,, = 6% dm S 
- - -lm,e, - sin A 1 y'l dm - cos A t2 dm (11.3,14) S S 

For P,, and e, both to be zero, we would require 

sin A ly'l dm + cos A t2 dm = 0 S S (11.3,15) 

This condition cannot be met if A = 0, but in principle can be if A # 0 by 
the addition of suitable balance weights. When both P,, and e, are zero we 
have complete dynamic balance of the elevator, and rigid body motion of 
the vehicle does not induce motion of the control. 

The problem of reducing inertia coupling when aeroelastic flutter is the 
issue is similar to, but not the same as, that discussed here. The relevant 
product of inertia would in general be a different one [see (11.3,24)]. 

THE SERVO EQUATION 

The pair of equations (11.3,13) do not normally give the whole picture. 
The control system illustrated in 11.4 is intended to operate with OJ as near 
to zero as possible. Typically a hydraulic system for this application would 
sense BJ as an error, and control the flow of high-pressure fluid to the piston 
so as to reduce it. A solenoid-controlled servo that could perform this function 
is illustrated in Fig. 11.6. The ports are such that the actuator is forced to 
follow the valve spool. In  this case the error signal might be generated by a 
displacement transducer attached to the link AB of Fig 11.4 and used via 
an intervening electronic system to position the value spool. Alternatively, 
an entirely mechanical linkage could connect the valve spool to the pilot's 
control. Servos like this one have the characteristic that the volume rate of 
flow of oil is very nearly proportional to the valve error, regardless of load. 
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FIG. 11.6 Schematic of solenoid-controlled hydraulic servo. 

Since the flow rate is proportional to the velocity of point A, which is a 
linear combination of 8, and e J, and since the valve error is proportional 
to 19 J, the servo equation in this case would be 

ade + eJ = beJ (11.3,16) 

Adding this equation to (11.3,13) completes the system, and has the effect 
of transferring J  to the autonomous set of state variables, leaving only P 
as a nonautonomous input. The functioning of the servo itself in the neighbor- 
hood of an equilibrium point, as an uncoupled system, is described by putting 
AV, a, and q = 0, leading to the control system equations (in Laplace trans- 

From this equation the A8e/P transfer function can readily be found. The 
characteristic equation is found by expanding the determinant of the 3 x 3 
matrix, and is a cubic. 

If the servo is powerful enough that 0 may be assumed to be identically 
zero, then a substantial simplification results. In  that case (11.3,16) is super- 
fluous and J  can be eliminated via (1P.3,12), i.e. 

1 J = -  (I~J Je - (l1.3,18) 
k22 

If furthermore the inertial coupling IeJ is negligibly small, which can be 
ensured by design, we get the desirable simple result 

J = - k , , p = @  (1 I .3,19) 
k22 

Assuming both the above conditions to hold, the first system equation reduces 
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and gives a second-order transfer function connecting P and Ad,. The corre- 
sponding equation with the a and q terms present is obtained from (11.3,13a) 
as 

where 

Although perfect dynamic balance of the elevator surface may not always 
be achieved, the inertia coupling terms are often small. If they can be 
neglected, we get the simplest equation that still contains the essential 
ingredients of the control dynamics-i.e. the inertia of the control elements 
and the aerodynamic feedbacks : 

-H, AV - (H,S + Ha) A z  - H,q + (I,s2 - His - Ha) AF, = (a) 
(11.3,22) 

With similar assumptions, the equations for the other two control systems are 

Rudder system : 

- H ~ B  - H,? - H,P + (I# - H ~ S  - B ~ )  8, = K,TS, ( b )  

Aileron system : (11.3,22) 

For the aileron system, 6, is the downward deflection of the right-hand 
surface, assumed equal to the upward deflection of the left-hand surface. 
I ,  is the generalized inertia of the entire system comprising both surfaces 
and all connected parts, but H is the aerodynamic hinge moment on one 
surface only. 

COUPLlNG OF CONTROLS WITH ELASTIC DEGREES OF FREEDOM 

I n  Sec. 5.12 we presented equations of motion for elastic modes with con- 
trols locked in a fixed position, and in the preceding section we have developed 
the control equations for a rigid airplane. Thus, coupling between controls 
and elastic motions has been excluded. In  fact, as is clear from the existence 
of the aileron reversal phenomenon (See. 8.4), and the effect of flexibility 
on elevator effectiveness (Sec. 7.4), there are important couplings between 
the control degrees of freedom and the elastic degrees of freedom. To include 
these entails modifications to both the elastic equations (5.12,7) and (5.12,12) 
and control system equations such as (11.3,12). The details depend on 
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which control system is being considered-aileron, elevator, or rudder-and 
on its particular design features. We illustrate the process by considering 
the elevator surface and its coupling with x deflections of the vehicle. We 
treat a case of one degree of freedom by stipulating BJ = 0. 

The deflection of the structure from the reference position is now given 
by [cf. (5.12,1)] 

CO 

where h, is zero except for points of the elevator, where i t  is h, = E and 
is the distance from the elevator hinge line, as shown on Fig. 11.5. Now the 
displacement function represented by the last term is not in general ortho- 
gonal to the h,, and hence the integrals of its products with them that 
appear in the kinetic energy do not vanish. This leads to the appearance 
of an additional term on the 1.h.s. of (5.12,7), viz. (an exercise for the reader) 

where 

the integral being taken over the elevator. 
Similarly, the 1.h.s. of (11.3,13a) (with BJ = 0) becomes 

The terms containing In, in these equations represent inertial couplings be- 
tween the elevator and elastic degrees of freedom. That in (11.3,23) corre- 
sponds to "tail wags dog," i.e. acceleration 8, of the elevator generates 
motion in the nth elastic mode. This may be expected to be a small effect 
in most cases. That in (11.3,24) represents the converse, "dog wags tail," 
i.e. elastic mode accelerations i', generate motion of the elevator. This 
contribution is very significant in relation to control-surface flutter, and is 
minimized by proper mass balancing of the control surface to reduce In, 
for the critical elastic mode. 

The remaining modifications to the equations of motion occur on the r.h.s. 
For the elastic modes the only addition is one aerodynamic term to F n ,  i.e. 
A,, Ade to (5.12,12) or Gn8 Ad, to (5.12,13). These aerodynamic contributions 
to elastic motion are usually important. The addition to the control equation 
is also an aerodynamic coupling. There He in (1 1.3,13c) becomes 
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In  summary, the elastic and control equations are both modified by addi- 
tional simple inertial terms on the 1.h.s and by aerodynamic terms on the 
r.h.s. 

1 1.4 EXAMPLE-STABILITY AUGMENTATION SYSTEM 
FOR STOL AIRPLANE 

In  Sec. 9.8, where we considered an example STOL airplane, we found 
that the spiral mode was unstable, with an uncomfortably short time to 
double. We remarked there that a feedback stability augmentation system 
might be useful. How should we proceed to synthethize such a system? 
We can choose any of (j3, p, r )  as variables to sense, and feedback functions 
of them [cf. (11.2,1)] to produce command signals for the aileron and/or 
rudder. But which variables shall we choose and what functions of them 
shall we use? Here the "flight dynamicist's approach" of looking a t  the 
feedback control system as a way of modifying the aerodynamic derivatives 
(Sec. 11.1) is helpful. The full set of synthetic changes that can be made in 
the six lateral moment derivatives is described by the relations 

where [k,J is the 2 x 3 matrix of feedback gains, i.e. 

Thus for example, 

and 

Equations (11.4,2) are written in dimensional rather than nondimensional 
form, since the sensing devices used to generate the feedback signals would 
ordinarily operate on the dimensional physical variables. 

These relations must now be applied with good engineering judgment. 
Stumbling about blindly in the six-dimensional parameter space of the k,i is 
not a satisfactory way to find the solution. First, the number of nonzero kij 
must be kept to a minimum, since each one entails extra hardware or circuitry, 
adding to weight, cost, complexity, and failure probability. Second, the engi- 
neer must take advantage of his understanding of the system and of the 
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fault to be corrected. Here the fault is that the spiral mode is unstable, the 
other two modes being stable. We know that the criterion for spiral stability 
in horizontal fight is (9.7,6) 

and that it must be the violation of this criterion that is the cause of the 
instability. On examining Table 9.9-for example a t  CWe = 4.0-we find 
the left hand side of (11.4,3) to be 

We also observe that there is no hope of correcting the situation without 
changing the sign of one of the four derivatives. In fact the one to which 
our attention is naturally directed is C,,, which is here positive, but is ordi- 
narily negative for "well-behaved" airplanes. A "synthetic" C,, of the 
required sign can be introduced by aileron feedback of the form 

In  fact, an attempt a t  a solution based on this sideslip feedback for CWe = 4.0 
was unsuccessful. When kll was made large enough to stabilize the spiral 
mode, the lateral oscillation was driven unstable. Now we observe from 
(9.7,13) that C,? is the main factor available to control the damping of the 
lateral oscillation and hence an increase in IC,,1 is indicated. This is also 
beneficial in meeting (11.4,4) when combined with a change of sign of C 4' 
We therefore choose a second nonzero gain, k,,, so that the control de- 
flections are given by 

Ad, = kI1p kll > 0 

Ad, = k,,r k,, > 0 (1 1.4,5) 

The control derivatives assumed for this example, representative of those 
that pertain to a deflected slipstream configuration, are 

C,,, = - .13/rad C,,7 = - .30/rad 

C = +.O4/rad Czar = +.04/rad 
"6,  

With these derivatives, and a control law given by (11.4,5), values of kll 
and k,, can readily be found that eliminate the instability in the spiral mode 
while maintaining a stable lateral oscillation. In point of fact it is only a 
little more difficult in this case to incorporate a more realistic feedback law 
than the simple gains of (11.4,5). Consequently the example has not been 
computed with (11.4,5) but rather by assuming that each control actuator 
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is a first-order dynamic system of fast response time. The corresponding 
control equations used were 

which implies that the time constants of the aileron and rudder position 
servos are, respectively, 2% and sec, that there are zero time lags in the 

and r sensors, and that the steady-state gains are 

Aileron: k,, = K,,/lO deg/deg 

Rudder : k,, = K,,/12 deg/(deg/sec) 

Equations (11.4,6) are now incorporated into the basic lateral equations 
of motion to yield the final mathematical system. After converting (11.4,6) 
to nondimensional form, we get the result (1 1.4,7). The eigenvalues of (11.4,7) 

were calculated for ranges of K,, and K2,, and a typical root locus is shown on 
Fig. 11.7. There is a substantial range of practical gains for which stability 
is achieved. For example for K,, = 10, K,, = 20, the spiral and Dutch-roll 
characteristics are 

Spiral : t% = 7.4 sec 

Oscillation: T = 12.4 sec, N% = .21 cycles 

The corresponding control gains are, respectively, 1 deg/deg for the aileron, 
and 1.67 deg/(deg/sec) for the rudder. These are both quite modest, and 
would not likely present any exceptional problems of control design. 
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Lateral 
oscillation "I, 

30 = K23 

FIG: 11.7 Root loci for stability augmentation system. 

ELIMINATION OF STEADY-STATE RUDDER ANGLE 

The solution presented above contains a feature which could p~ssibly be 
undesirable-i.e. there is a steady-state rudder angle associated with constant 
yaw rate r. This means that the autopilot would generate a rudder deflection 
during steady turns, with 6, > 0 for right turns and vice versa. This is 
opposite to the rudder deflection wanted in the turn (see Sec. 10.4), and 
hence we have the autopilot opposing the human pilot. If this situation 
occurred with any frequency, the pilot rating of the aircraft would be ad- 
versely affected. On the other hand, Cwe = 4.0 represents a very low speed, 
presumably associated only with landing and take-off, and not ordinarily 
with turning flight. Thus it would depend on factors somewhat outside the 
scope of this example whether this steady-state behavior of the autopilot 
presented a problem or not. 

In  cruising fight this problem would be more serious, and it would be 
desired to eliminate it. We illustrate here how it could be done. 

The steady-state response of the rudder system can be eliminated by 
incorporating what amounts to a high-pass filter with zero static gain? in 
the rudder loop, as shown in Fig. 11.8. The feedback element K , , ~ s / ( l  + 7s) 
t A "washout" circuit. 
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FIG. 11.8 Stability augmentation system for STOL airplane. 

has zero static gain (see Sec. 3.2), so that 6, is zero when r = const. The 
frequency response of this element is 

K2,iot 
G(i0) = - 

1 + iwt 

so that for 07  -+ CO, G(io)  -+ K2,. Thus by proper choice of 7, the filter can 
be made to behave like a simple gain of K,, above a chosen frequency w,. 
To analyze the system with the filter incorporated, we could find the overall 
transfer function of the closed-loop system and calculate the roots of the 
characteristic equation, or alternatively we can modify (11.4,7) to correspond 
to Fig. 11.8. The latter procedure is by far the simpler in the present 
instance. The only respect in which (11.4,7) does not apply is in the last of 
the equations, which now must correspond to 

The corresponding differential equation is 

After conversion to nondimensional form, this becomes 
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On defining a new variable 5, we can replace this second-order equation by 
a pair of first-order ones, i.e. 

DS, = 5 
t*2 t* 

D[ =%DP- 1 2 T ~ S , -  (1 + 1 2 ~ ) ~ ~  
(11.4,12) 

A 

The last of (11.4,7) has now to be replaced by the pair (11.4,12). In doing so 
we eliminate DP from (11.4,12) by using the third equation of (11.4,7). The 
result is shown as (11.4,13). 

Computations made with (11.4,13) show that the effect of the autopilot 
in correcting the spiral instability is very much reduced by the filter unless 
T is very large (Fig. 11.9), in which case the effectiveness of the washout 
circuit is impaired. As has been pointed out previously, however, a slow 
divergence of the spiral mode is not unacceptable, so a compromise solution 
is possible without excessive values of T.  For example, with Kl,  = 15, 
K,, = 20 and T = 10 sec the modal characteristics are 

Spiral: tdouble = 18.1 see 

Oscillation : T = 11.4 see, 27% = .56 cycles 

FIG. 11.9 Effect of washout circuit on lateral roots. Kll = 15, K23 = 20. 



- C,Ll 0 0 0 B 

0 j o  0 0 
1 
A 
- 0 0 4 

0 -10t" 0 0 

0 0 0 0 1 

5 

- 12t*2/T 

(11.4,13) 



478 Dynamics of atmospherio fight 

1 1.5 EXAMPLE-ALTITUDE AND GLIDE-PATH CONTROL 

One of the most important problems in the control of flight path is that of 
following a prescribed line in space, as defined for example by a radio beacon. 
This is crucial in the landing situation under poor visibility when the airplane 
flies down the ILS glide slope. We shall discuss this case by considering first 
a simple approximate model that reveals the main features, and then 
examining a more realistic, and hence more complicated case. 

FLIGHT AT EXACTLY CONSTANT HEIGHT-SPEED STABILITY 

The first mathematical model we consider can be regarded as that corre- 
sponding to horizontal flight when a "perfect" autopilot controls the angle 
of attack in such a way as to keep the height error exactly zero. The result 
will show that the speed variation is stable at high speeds, but unstable a t  
speeds below a critical value near the minimum drag speed. Neumark (11.2) 
recounts that this criterion was first discovered in 1910 by PainlevB, and 
that it was a t  first accepted by aeronautical engineers and scientists, but 
later, on the basis of the theory of the phugoid which showed no such effect, 
was rejected as false. In  fact, to the extent that a pilot can control height 
error by elevator control alone, i.e. to the extent that he approximates the 
ideal autopilot we have postulated, the instability at low speed will be 
experienced in manual flight. Since speed variation is the most noticeable 
feature of this phenomenon, it is commonly referred to as speed stability. 

The analysis that follows is essentially that of Neumark, but adapted to 
the notation and methods of this book. The basic assumption that the flight 
path is exactly horizontal implies y = 0, or 8 = a, (see Fig. 4.4.), whence 
A0 = Aa. An exactly horizontal flight path also implies L = W. The 
pitching moment equation is specified to be identically satisfied by means 
of an appropriate but unspecified control device that supplies the needed 
pitching moment as required. The system equations are then (5.13,19) with 
ha = he, y, = 0 and the third equation missing. We further specify that 
a, = 0. The equations are then 

Acc 

Acc 
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We now make some simplifying approximations, i.e. that the speed deriv- 
atives CDv and CLv are negligible and that 2p > CLdr, CL-. Actually these 
are very weak approximations for a conventional airplane in cruise con- 
figuration. On combining the Aa terms of the first two equations, eliminating 
4 by means of the third, and observing that CLe = Cwe, we get 

Elimination of Aa yields the first-order speed equation 

The speed variation following an initial speed error A?,, is clearly expo- 
nential, 

A$ = ~ ? ~ ' , e ~ l $  

with time constant given by 

and time to half by 
A 

t ,  = -.693t*T sec 

We must now specify a propulsion system in order that CTv may be deter- 
mined. The result finally obtained depends on this choice, but only in the 
actual value of the critical speed, not its existence. We arbitrarily choose a 
constant-thrust engine, for which (see Table 7.1) 

c = 20 - -2cDe 
TV T e  - 

Equations (1 1.5,4) then yield 

The factor in the inner parentheses can be rewritten as 

where dCL/dCD is the slope of the tangent to the drag polar, and CL/CD is 
the slope of the secant, see Fig. 10.2. Just as in Sec. 10.2, Eq. (10.2,17), this 
factor passes through zero at the point Ci, Cb where LID is a maximum. 
It is positive for CL > C i  and negative for CL < Ci. If V' be the speed 



480 Dynamics of atmospheric flight 

corresponding to (LID),,, then the speed variation is seen to be stable for 
V > V', but unstable for V < V'. That is, speed errors will die out at high 
speeds, but grow at low speeds. This phenomenon is seen to be related to 
the change of sign of KyS that occurs at the same critical speed (Sec. 10.2). 

NUMERICAL EXAMPLE 

The jet transport of Sec. 9.1 is used for the example, in horizontal fight 
a t  sea level. The data needed for the calculation is as follows: 

W/X = 60 psf; p = 101.8; p = .002378 

With this data, the values of OLE and Ve at  (LID),,, are, respectively, 
C i  = .595 and V' = 290 fps. The result of the calculation with (11.5,5) 
is shown in Fig. 11.10. There is positive "speed stability" above 290 fps, 
but the characteristic time to half is large, in excess of 75 sec. In  the low- 
speed range (sometimes referred to as "the backside of the polar," with 
reference to the CL - CD "polar" diagram), the motion is unstable, with 
time to double falling as low as 30.5 sec at CL = 1.6. A low-speed landing 
approach with this speed characteristic is &desirable from a handling- 
qualities standpoint (see Sec. 12.8). On the other hand, the example corre- 
sponds to cruising flight, not landing, since wheels and flaps are retracted. 

Ve, fps 

Fro. 11.10 Speed stability of jet transport at sea level. 



Closed-loop control 48 1 

The speed stability is in fact quite sensitive to the drag characteristics 
of the airplane. Thus, suppose that undercarriage and flaps have been lowered 
on the jet transport, with large increases in parasite and included drag 
reflected in the polar equation 

The results for this case, also shown on Fig. 11.10, are very different. The 
divergence time to double is now greater than 30 sec for all speeds above 
about 99 mph. 

FLIGHT O N  ILS GLIDE SLOPE 

In the above analysis, we assumed that the airplane was under the control 
of an ideal autopilot that kept the height error exactly zero. A more realistic 
model incorporates a feedback control that senses height error and actuates the 
elevator? in response (see Fig. 11.11). The time lag associated with response 
of height to elevator input may be expected to lead to stability characteristics 
significantly different from those of the simple model. 

Let us assume then that the airplane is making an automatically controlled 
approach on ILS. That is, a radio beam defines the glide path, and the pitch 
autopilot is coupled to the radio signal in such a way that height error is 
sensed and actuates the elevator. The autopilot and control system are 

FIG. 11.11 Automatia control of glide path. 

t A still more sophisticated system uses control of thrust as well as of elevator. This 
is capable of producing better system performance provided that thrust responds 
quickly enough to the control command. 
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relatively fast-acting compared to the pitch response of the vehicle, so we 
may reasonably assume a simple gain for the transfer function of these 
elements. Thus the mathematical model is obtained from (5.13,19) with the 
additional control law 

Ad, = K=E + K2P (1 1.5,7) 

where E is the height error and we have included both proportional and 
rate terms. 

For the class of airplane considered, the standard glide slope is about 2+ 
to 3O, so little error is introduced by using the equations for y, = 0, and this 
we do. The height error is defined as 

where zEi is the commanded altitude. Thus combining (11.5,7 and 8) we get 

which in nondimensional form is 

From the last of (5.13,19), for ye = 0, we have 

D;, = -Ay = At( - 
from which we get 

E E 
Ade = -Kl - 5, - K2Ve(Aa - AO) + Kl - iE, + K2V,DiEi (11.5,lO) 

2 2 

For the control inputs in (5.13,19) we take 

and 

AC, = ACDo = ACLe = 0 

Acme = C,, Ad, (11.5,ll) 

We assume additionally that a number of derivatives are zero (as in Sec. 9.1), 
i.e. 

C = c  = C  = C  - c  = O  
Dv v "V Lq - L& 

The basic system derived from (5.13,19) is then 5 x 5, with variables A?, 
Aa, 4, AO, h,, with Acme eliminated via (11.5,10 and 11). The result is given 
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NUMERICAL EXAMPLE 

Computations of the stability and performance were carried out with 
(11.5,12) for the same jet transport airplane used in preceding examples, 
flying at sea level. The drag polar is (11.5,6) corresponding to the landing 
configuration. The data that differ from those of Sec. 9.1 are as follows: 

CDa = .959, t* = .0460 sec, p = 101.8, 
Ve = 167.4 fps, Cw, = 1.8, CDL = .377 

The eigenvalues corresponding to a range of K, and K ,  are shown on Fig. 
11.12 in the form of root loci. Point A corresponds to the uncontrolled 
phugoid, and increasing proportional gain K,  with zero rate gain produces 
the branch AB of the locus. The system rapidly goes unstable without 
error-rate control, but is easily stabilized with a, modest value of K2. For 
example, at point C on Fig. 11.12, with K ,  = .002 (about 12" elevator per 
100 ft  of height error) and K2 = .010 (about 12" elevator per 20 ftlsec 
height error-rate), the eigenvalue characteristics are : 

Phugoid : period = 10.4 sec 
N% = .54 

Three real roots: thalt = 94.0, 1.68, 0.86 sec 
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FIG. 11.13 Response of automatic glide-path controller. (a) Amplitude. ( 6 )  Phase angle. 

I I I * 100 h 
-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 

FIG. 11.12 Root locus of glide-path controller. 
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FIG. 11.13 (Contd.) 

The short-period mode has disappeared, being replaced by a pair of real 
roots, and the third real root is associated with the extra degree of freedom. 

The performance of the system, i.e. its ability to track the glide slope, can 
be in part inferred from the frequency response associated with XEi  input 
and zE output. This is computed by taking the Laplaee transform of (11.5,12) 
(which simply changes D to s wherever it occurs), replacing s by id, and 
solving the resulting complex algebraic equations for the ratio zE/zEi as a 
function of 13. The result is shown on Pig. 11.13. The system is seen to be 
able to follow waves in the ILS beam fairly closely down to wavelengths 
of the order of 4 mile (b = 2 x 1P2) at  which point a phase lag of 40' has 
developed. This calculation is not, of course, sufficient to decide on the 
acceptability of the chosen gains. For that purpose one should calculate 
actual flight paths in the presence of wind shear and turbulence, and relate 
the dispersions to what is acceptable for a given mission. 

1 1.6 STABILITY OF CLOSED-LOOP SYSTEMS 

We have seen in previous examples how "closing the loop" can modify 
the basic stability of an airplane. In Sec. 11.4 feedback was used to stabilize 
an unstable vehicle, and in Sec. 11.5 the addition of a feedback loop to lock 
on to an altitude or glide reference made a stable vehicle go unstable. We 
have also seen in the examples how the stability of a linear feedback system 
can be calculated by formulating the appropriate system matrix and treating 
it as we would any other linear system. 
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PIG. 11.14 (a) Simple feedback system. ( b )  Single-pulse input: G = Ke-Ts. 

For complicated multiloop systems there is relatively little that can use- 
fully be said in a general way about closed-loop stability. For simple systems, 
however, as in Fig. 11.14 we can arrive a t  some general conclusions about 
the effect of loop gain and phase lag on stability. 

CHARACTERISTIC EQUATION 

As has been seen in the examples treated, the addition of a feedback loop 
modifies the characteristic equation, and hence the stability of a system. 
If the transfer function of Fig. 11.14 is a ratio of two polynomials 

then the overall system transfer function is 

g G G'(s) = - = - - N NID - 
s l + G - 1 $ N / D  N f D  

The characteristic equation is then 

f(s) = N(s)  + D(s) = 0 
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which is to be constrasted with the open-loop iquation D(s) = 0. Thus the 
change in the characteristic equation is produced by the numerator N(s), 
and the least possible change is the addition of a constant. 

EFFECT OF GAIN 

The effect of gain is well illustrated by the familiar public-address acoustic 
system, in which "whistling" or oscillation occurs when the volume control 
is set too high. As a model for this case, consider the transfer function Ke-~s, 
a simple gain with time delay. 

If the system input were a single short pulse (of duration < < T) as in Fig. 
11.14b7 the signals in the E and y channels would be as shown, a sequence 
of alternating pulses a t  time interval T, all of the same width, but with 
magnitudes 1, K, K2 . . . . It is clear that if K < 1 the pulses form a dimin- 
ishing sequence that ultimately dies out, and that if K > 1, there is an in- 
creasing series which is a divergent, or unstable situation. This would 
correspond in the case of the P.A. system to an acoustic pulse travelling 
from the loudspeaker to the microphone and arriving there stronger than the 
one originally fed in. 

EFFECT OF PHASE LAG 

Suppose now that the input is a series of pulses, equally spaced but 
alternating in sign. If the time lag T is such that the feedback pulses fall 
in the "empty spaces" between the input pulses there is no interference of 
the pulses, each input can be considered individually, and the criterion for 
divergence is the same as above, i.e. K > 1. If, however, the time lag is 
such that each return pulse coincides exactly with the next input, as illus- 
trated by the dotted pulses in Fig. 11.14b, then the error signal and the ouput 
form the sequences 

E :  1 - ( l+K)  ( l + K + K 2 )  -( l + K + K 2 + K 3 ) . . .  
Y: K -K(1 + K) K ( l  + K + K2) * - '  K(l  + K + K2 +*") 
The output is seen to contain the sum of a geometric progression of factor K, 
which is divergent if K > 1 and converges to the limit (1 - K)-l if K < 1. 
Thus in the case of the alternating input we find again that the stability 
criterion is K < 1. This is clearly the "worst" phase lag for a pulse train 
since each return pulse arrives at  such a time that it provides the maximum 
reinforcement to the next input. 

SlNUSOl DAL INPUT-NYQUIST CRITERION 

The above consideration of pulse trains (which can be so easily analyzed) 
has shown the important effects of loop gain and phase lag on system stability. 
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These concepts are brought into a somewhat more useful perspective when 
we consider a sinusoidal input, for all inputs to linear systems can be Fourier- 
analyzed into separate sinusoids, the individual responses to which can be 
linearly superposed to construct the output. Suppose then that there is a 
steady sinusoidal input represented by 

5 = XOeiWt 
and a steady sinusoidal output 

(This implies of course that the system is stable.) The error is E = x - y = 
where e0 = Xo - YO. NOW we recognize that the critical phase lag is 

180°, since this generates the maximum error signal, just as in the case of 
the pulse train. So let 

Yo = KE,~-~* = -KE, 
Then we get 

The input required to maintain a steady oscillation of given amplitude is 
seen to diminish as K increases until it vanishes altogether at  K = 1, i.e. 

Wl'"2 

Fra. 11.15 Stability margins. 
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a t  K = 1 and phase lag of 180°, the system oscillates steadily with no input. 
This situation clearly represents a stability boundary; further increase in 
gain corresponds to instability. 

The Nyquist criterion (11.4) rigorously derived from a theorem of Cauchy 
contains the conclusion derived somewhat heuristically above. It uses the 
frequency response curve for the open-loop system, i.e. G(io) ,  and its relation 
to the point (-1,O) of the complex plane, to assess stability. The amount 
by which the frequency response curve "misses" the critical point (-1,O) 
leads to the concepts "gain margin" and "phase margin" illustrated in 
Fig. 11.15. 
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handling qualities 

C H A P T E R  12 

BY L. D. REID AND B. ETIIZN 

12.1 THE HUMAN PILOT 

Although the analysis and understanding of the dynamics of the airplane 
as an isolated unit (which has been the burden of the preceding chapters) is 
extremely important, one must be careful not to forget that for many 
flight situations it is the response of the total system, made up of the human 
pilot and the aircraft, that must be considered. It is for this reason that the 
designers of aircraft should apply the findings of studies into the human 
factors involved in order to ensure that the completed system is well suited 
to the men who must fly it. 

Some of the areas of consideration include: 

1. Cockpit environment; the occupants of the vehicle must be provided 
with oxygen, warmth, light, etc., to sustain them comfortably. 

2. Instrument displays; instruments must be designed and positioned to 
provide a useful and unambiguous flow of information to the pilot. 

3. Controls and switches; the control forces and control system dynamics 
must be acceptable to the pilot, and switches must be so positioned 
and designed as to prevent accidental operation. Tables 12.1 to 12.3 
present typical pilot data concerning control forces. 
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Table 12.1 

Estimates of the Maximum Rudder Forces that can be 
Exerted for Various Positions of the Rudder Pedal 
(Ref. 12.1) 

Distance from 
Rudder Pedal Position Back of Seat, in Pedal Force, lb 

Back 31 
Neutral 342 
Forward 38; 

Table 12.2 

Typical Rates of Stick Movement in Flight Test Pull-ups Under 
Various Loads for 6 in. to 8 in. Deflection (Ref. 12.1) 

Maximum Stick Average Rate of Stick Time for Full 
Case load, Ib Motion, inlsec Deflection, sec 

4. Pilot workload; the workload of the pilot can often be reduced through 
proper planning and the introduction of automatic equipment. 

The care exercised in considering the human element in the closed-loop 
system made up of pilot and aircraft can determine the success or failure 
of a given aircraft design to complete its mission in a safe and efficient 
manner. 

12.2 MATHEMATICAL MODEL OF HUMAN PILOTS- 
COMPENSATORY DISPLAY 

Many critical tasks performed by pilots involve them in activities that 
resemble those of a servo control system. For example, the execution of a 
landing approach through turbulent air requires the pilot to monitor the 
aircraft's altitude, position, attitude, and airspeed and to maintain these 
variables near their desired values through the actuation of the control 
system. It has been found in this type of control situation that the pilot 
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Table 12.3 

Hand-Operated ~ontroi Forces (From Flight Safety Foundation Human 
Engineering Bulletin 56-538) (see figure on page 495) 

Note: The above results are those obtained from unrestricted movement of 
the subject. Any force required to overcome garment restriction would reduce 
the effective forces by the same amount. 

can be modeled by a set of constant-coefficient linear differential equations 
(termed "human-pilot describing functions"). Much of the original research 
in the field of human-pilot describing functions has concentrated on the 
pilot's performance in a single degree of freedom compensatory tracking 
task with random-appearing system inputs. In  a single-degree-of-freedom 
task the pilot controls a single state variable through the actuation of a single 
control. A compensatory display is one in which the tracking error is pre- 
sented, regardless of the source of the error. Fig. 12.1 shows the block diagram 
for such a task. Were a pilot is concentrating on controlling the pitch attitude 
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Turbulent air 
disturbance 

FIG. 12.1 T y p i c a l  compensatory task. 

of the aircraft through the use of the artificial horizon display. The system 
input in this case is turbulent air which produces random pitching motion 
of the vehicle. 

The pilot model used in compensatory tasks consists of the describing 
function and the remnant as shown in Pig. 12.2. (See also Sec. 3.5.) Here 
the task is the same one presented in Fig. 12.1, but the human pilot has 
been replaced by a mathematical model. The model consists of two parts, as 
shown: Y(s), the linear describing function (written in Laplace transform 
notation), and n(t) the remnant. Since a linear model is never able to describe 
the pilot completely, Y(s) is insufficient by itself, and it is necessary to 
include the remnant n(t), which is that signal that must be added in order 
to have all the time signals circulating in the system of Fig. 12.2 correspond 
exactly to those of Fig. 12.1 when the identical input is present. The Y(s) 
selected to describe the pilot in any particular task is chosen so as to minimize 
that part of the input signal to the aircraft which arises from n(t). Thus the 
linear pilot model that results is that which accounts for as much pilot input 
to the aircraft as possible, and a measure of its adequacy is the fraction of the 
pilot input to the aircraft accounted for by Y(s). 

- 
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FIG. 12.2 Compensatory task w i t h  p i l o t  model. 
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The human-pilot describing function is useful in studying two classes of 
problems. I n  the first the describing functions derived from previous re- 
search are utilized to aid the systems designer. With a mathematical de- 
scription of the pilot a t  hand he can close the loop around the mathematical 
description of the proposed vehicle in order to predict the overall system 
response. The second type of study involves the measurement of actual 
human-pilot describing functions as the pilot flies a particular vehicle in 
order to obtain an objective measure of how the task affects the pilot. 

Due to the complex nature of the situation i t  is possible to model the pilot 
in many ways and to measure the model by employing a variety of techniques. 
One of the most successful approaches to the measurement problem utilizes 
power-spectral-density measurements of signals circulating in the control 
loop. The general case of a tracking task of one degree of freedom with a 
compensatory display is illustrated in Fig. 12.3a. In this task the pilot must 
control the aircraft response m(t) in such a fashion that it matches as closely 
as possible the desired aircraft response i ( t ) .  The pilot does this by viewing 
the instantaneous error e(t) and altering his input o(t) to  the aircraft. It is 
found that the pilot's control technique is primarily influenced by the type 
of input i ( t ) ,  the dynamics of the control system, the type of display and the 
dynamics of the aircraft. Any useful pilot model must reflect these iduences. 

Past research in this field has concentrated on tasks with random appearing 
input signals i ( t )  because so many real-world situations involve this type of 
disturbance. Thus the pilot models that have been developed apply strictly 
only to tasks with the above type of input. The system of Fig. 1 2 . 3 ~  is 
modeled by that of Fig. 12.3b. Note that the model includes the dynamics 
of the control system and that the signal o(t) corresponds to the position 
of the control column. It has been found that in the frequency band of 
primary interest and for the type of controls normally found in aircraft, 
such a model is fairly insensitive to the exact control system used and that 
pilot models developed on this basis are quite general. Now the linear system 
of Fig. 12.36 can be redrawn as the point by point sum of the two linear 
systems of Pig. 12.4 (if the aircraft is assumed to be a linear system). It follows 
that 

e(t) = el@) + 
o(t) = o1(t) 4- o,(t) 

m(t)  = m,(t) + m,(t) 

The describing function Y(s)  is chosen to minimize the r.m.s. value of o,(t). 
Note that this is not the same criterion as used in defining the open-loop 
describing function in Sec. 3.5, where the mean-square-remnant was mini- 
mized in the presence of a $xed input. The difference of course is that we 
are dealing here with a closed-loop system, in which signals derived from the 
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remnant circulate the loop and appear a t  the input to the pilot. The process - 
of minimizing oZ2(t) can be carried out in a manner basically similar to that 
used in Sec. 3.5 with the result (ref. 12.2) 

where QiO(co) is the cross-spectral density of i(t) and o(t) etc. (See Sec. 2.6). 
We also find that ai,(m) = 0,-i.e. the remnant is uncorrelated with the 
input signal i(t). This linear model, Y(s) ,  is a best fit in the root-mean-square 
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.i(t) 7 - e ( t )  dTd l o ( t ) j q  ,m( t )  > 

Pilot model L -------- 1 

FIG. 12.3 (a) General compensatory task. ( b )  Model. 

sense. It will not describe the pilot's output exactly. The remnant n(t) is the 
difference between the actual pilot output and the linear approximation to it. 
I n  order to obtain a measure of the adequacy of the linear model, Y(s), a 
parameter p2 has been defined as 

When p2 is near unity, i.e. when 02(t) m 0, the model Y(s) is a good approxi- 
mation of the pilot. Another useful form for p2 can be found by using the 

Aircraft 
m ~ ( t )  

PIG. 12.4 Two-part linear model of the compensatory task. 
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over 6 trained subjects 
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1.0 L 

FIO. 12.5 Experimentally measured pilot model, compensatory display. (from ref. 12.5) 

497 



498 Dynamics of atmosplzeric $ight 

FIG. 12.5 (Contd.) 

relationships among the variables in Fig. 12.4 to derive 

This form is preferred for measurement because i t  is not possible to measure 
02(t) directly. The remnant n(t) exists because in actuality the human pilot 
is not operating exactly as a linearlinvariant mathematical system. The 
signal n(t) is a random-appearing variable and hence is not predictable. 
However, some measurements have been made of its statistical properties 
(ref. 12.6) over a range of task variables. Figure 12.5 shows a typical experi- 
mentally measured pilot describing function together with p2. In this task 
the input to the pilot was the deflection of the artificial horizoa display (in 
inches) and his output was control column deflection (in degrees). It is seen 
from the plot of p2 that the describing function models the low-frequency 
performance of the pilots quite well, but is less satisfactory for w > 5 radlsec. 
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The following form for the describing function has been developed t o  
cover the single-degree-of-freedom compensatory tracking task with a 
random-appearing input (ref. 12.3) : 

(12.2,2) 
I n  this formulation e-" represents the pure transmission time delay within 
the pilot associated with nerve conduction and stimulation. T is estimated 
to range from .06 to .10 sec. The factor in curly brackets is a reasonable 
representation of the dynamics of the neuromuscular system of the arm 
with typical values : l / T N 1  = 10 sec-l, coN = 16.5 radlsec, and 5, = .12. 
( T K s  + l ) / ( T ; s  + 1) represents a very low frequency lag-lead component. 
The remaining terms K,[(TLs + l ) / ( T I s  + l ) ]  are the adaptive portions of 
the model; the values of K,,  T L ,  and T I  are altered by the pilot to suit the 
particular system being controlled. It is found that for most engineering 
applications, in which an exact pilot model is not required a t  very low and 
very high frequencies, an adequate approximation is 

The following set of adjustment rules for the pilot model have been 
developed by McRuer et al. (ref. 12.3). 

1. Stability: The human adopts a model form to achieve stable control- 
i.e. one that produces a stable closed-loop system. 

2. Form selection-Low frequency: The human adopts a model form to 
achieve good low-frequency closed-loop system response to the input, 
signal. A low-frequency lag, T I ,  is generated when both of the following 
conditions apply : 
(a) The lag would improve the low-frequency characteristics of the 

system. 
(b) The aircraft dynamics are such that the introduction of the low- 

frequency lag will not result in destabilizing effects a t  higher fre- 
quencies that cannot be overcome by a single first-order lead, T,, 
of somewhat indefinite but modest size. 

3. Form selection-Lead: After good low-frequency characteristics are 
assured, within the above conditions, lead is generated when the aircraft 
dynamics together with the pilot time delay are such that a lead term 
would be essential to retain or improve high-frequency system per- 
formance. 
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4. Parameter adjustment : After adoption of the model form, the describing 
function parameters are adjusted so that: 
(a) Closed-loop low-frequency performance in operating on the input 

signal is optimum in some sense analogous to that of minimum 
mean-squared tracking error. 

(b) System phase margin, +M (see Sec. 11.6), is directly proportional 
to mi, the input signal bandwidth (loosely defined as the frequency 
above which the input spectrum decreases rapidly), for values of 
wi less than about 2.0 rad/sec. The strong effect of forcing-function 
bandwidth on the phase margin is associated with the variation of 
TN with mi. 

. (c) Equalization time constants TL or TI: when form selection 
requires l /TL or l /TI  << w,, the system crossover frequency (the 
frequency a t  which IG(iw)l IN(iw)l equals unity-see Fig. 11.15), i t  
will be adjusted such that low-frequency response will be essentially 
insensitive to slight changes in TL or TI (for wi << w,). 

5. w, Invariance properties : 

(a) Independence of co, w.r.t. Kc:  Let the aircraft static gain be Kc, 
and that of the pilot be K, [see (3.2,4) and (3.4,26)]. After initial 
adjustment, changes in Kc are offset by changes in the pilot gain, 
K,; i.e. system crossover frequency, w,, is invariant with Kc. 

(b) Independence of w, w.r.t. wi: System crossover frequency depends 
only slightly on the input bandwidth for mi < 0.8~0,~. (w,, is that 
value of w, adopted for wi << a,.) 

(c) coo Regression: When mi nears or becomes greater than 0.8coc,, the 
crossover frequency reduces to values much lower than o,,. 

Although the above pilot model was developed to describe the single- 
degree-of-freedom compensatory tracking task, i t  is finding more and more 
use in the general situation of the multiple-loop tracking task. In  such a 
task the pilot controls a number of vehicle variables simultaneously. It 
has been found that the same basic form of pilot model can be applied in 
many cases with slight modification to the values of some of the parameters 
(such as the time delay T) to account for the additional complexities of the 
task (such as visually sampling the outputs of several instruments). In  this 
application a single describing function is used to close each control loop 
actually closed by the pilot. For example, if the task is to control both the 
pitch and roll attitudes (assuming the pitch and roll modes to be uncoupled), 
one describing function would close the roll loop while a second would close 
the pitch loop. 
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12.3 MATHEMATICAL MODEL OF HUMAN PILOTS- 
PURSUIT DISPLAY 

Pilot models are being developed to describe the control situation when 
displays other than the compensatory type are utilized. An example of this 
is the pursuit display. The single-degree-of-freedom tracking task with a 
pursuit display is identical to the compensatory task of Fig. 12.3a except 
that the displayed variables are different-i.e. the pilot has different infor- 
mation. In  the compensatory task only e( t )  is displayed (Fig. 12.3) whereas 
in the pursuit task both i (t)  and m(t) are separately displayed. Figure 12.6 
illustrates the difference between the two displays for the same system state. 
It can be seen that additional information is presented to the pilot on the 
pursuit display. Althoughe(t) is available in both cases, only the pursuit display 
separates the error into its components and conveys this information to the 
pilot. For example, a pursuit display tells the pilot whether his tracking 
error is due to a difficult input signal, i ( t ) ,  or due to erratic pilot control of 
the aircraft, m(t), which in turn can affect his strategy in bringing the tracking 
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F I ~ .  12.6 DispIays. (a )  Compensatory. 
(?I) Pursuit. (b)  
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Turbulent air 
g(t) 
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i ( t )  Tanker a'titudpq Human pilot 1 
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column m(t) 
L--J 

FIG. 12.7 Typical pursuit task. 

error under control. Whether the one display or the other is best for the 
mission a t  hand is a complex function of the task performed. 

A technique for measuring human-pilot describing functions has been 
developed for the single-degree-of-freedom tracking task with a pursuit dis- 
play for situations where a secondary disturbance signal is present. This 
task is shown in Pig. 12.7. It might for example represent a mid-air refueling 
task where i ( t )  represents the tanker's altitude and the secondary disturbance 
g ( t )  represents turbulence acting on the controlled aircraft. The model 
of this task can be formulated in several ways. Figure 12.8 shows two 
useful forms of the model. The pilot is represented by a pair of describing 
functions (Y,(s), Y,(s)) or (Y,(s), Y,(s)) since the pilot is considered to have 

- - - - - - - - - 
 lot model 

nlt) , 

FIG. 12.8 Two models of the pursuit task. 
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two inputs and one output. [Since e(t) = i(t) - m(t) i t  is redundant to con- 
sider a case with three inputs.] Again n(t) represents the remnant. The 
describing function pairs are chosen to minimize the root mean square of 
that part of the vehicle input signal o(t) which is accounted for by n(t) (as 
was done for the compensatory display). The describing functions that 
result are [where the aircraft transfer function is A(s)] : 

where 

The denominators of (12.3,l) both vanish if either (i) g(t) = 0 or (ii) 
g(t) = const x i(t). In either of these cases the measurement of 4, and r$2, 

and hence of the describing function pairs, would not be possible. I n  addition 
the following are found to hold: 

As yet no general set of rules comparable to those for the compensatory 
task has been developed to cover this model. A typical measured pursuit model 
is shown in Fig. 12.9. It was found that the measured data could he fitted 
quite well by describing functions of the form (12.2,2). The task in this 
example was the same as the one used for Fig. 12.5, except that a pursuit 
display was used and a secondary disturbance added. If g(t) is made very 
small i t  is assumed that such models will also approximate pursuit tasks with 
no secondary disturbances. 



FIG. 12.9 Experimentally measured pilot model; pursuit display. (from ref. 12.5) 
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FIG. 12.9 (Contd.) 

12.4 THE FUTURE ROLE OF THE HUMAN PILOT 

I n  an age where more and more of the aircraft control task is being devolved 
to automatic equipment (e.g. autopilots, blind landing systems, stability 
augmentation systems) the role of the human pilot will perhaps slowly 
change from that of an active element in the manlmachine system to that of a 
manager overseeing the operation of the automatic controls. In  this situation 
the pilot must monitor the performance of the equipment and be prepared 
to take over in the event of a failure. This philosophy quite rightly predicates 
that the human pilot should make the h a 1  decisions that determine the 
fate of the craft under his command. Moreover, human pilots are uniquely 
capable of assessing the meaning of complex data patterns which indicate 
the state of the vehicle under conditions that the automatic equipment has 
not been designed to handle (witness Apollo 13!). On the other hand, this 
modus operand% poses a serious problem for the pilot, for he is then expected 
to assume manual control of a vehicle at  a critical time, following a system 
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failure. If he is unable to make the transition from passive to active 
control with sufficient speed and precision, disaster could well be the 
result. 

Thus i t  appears that if the pilot is expected to assume manual control 
a t  any time, the system should be so structured that he is either kept 
actively in the control loop a t  all times or is constantly made aware of the 
feel of the present aircraft configuration through some auxiliary task which 
he can practice on during critical phases of the flight. Research on the ability 
of pilots to control vehicles following stability augmentation system (SAS) 
failures has indicated that the resulting step change in vehicle dynamics 
can lead to an unstable man-machine system and loss of control (ref. 12.29). 
The mechanism behind this problem is as follows. With the SAS operating 
properly the vehicle dynamics are satisfactory and the pilot adopts a control 
technique to suit. The sudden SAS failure results in less satisfactory vehicle 
dynamics, which demands a much more concentrated effort on the part of 
the pilot in order to maintain control. Immediately following SAS failure, 
however, the pilot attempts to continue to employ the control technique 
he has been using previously with the SAS operative. This combination of 
man-machine dynamics can lead to an unstable system. If the system is 
to be fail-safe the pilot must be able to detect the change quickly and alter 
his control technique in time to recover from the upset. Consequently the 
advent of more automatic equipment does not diminish the need to study 
the role of man in the vehicle control loop. On the contrary, i t  generates 
new and more difficult problems requiring an even better understanding of 
the human pilot. 

12.5 AIRCRAFT HANDLING QUALITIES 

The assessment of handling or flying qualities of airplanes depends in the 
final analysis on pilot opinion. The earliest requirement (ref. 12.30) simply 
stated, "During this trial flight of one hour i t  (the airplane) must be steered 
in all directions without difficulty and at  all times be under perfect control 
and equilibrium." From this simple but hard-to-interpret statement has 
evolved a much more quantitative and sophisticated set of criteria. These 
are still far from perfect, and the introduction of each new class of vehicle, 
STOL (ref. 12.30), rotorcraft, SST, etc., requires a reassessment of the 
existing criteria for application in the new situation. 

When a pilot flies an aircraft he forms subjective opinions concerning the 
suitability of the man-machine system for performing the assigned task. 
In  arriving a t  an assessment he is influenced by many parameters. These 
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range over a wide spectrum and include: 

1. Aircraft stability; response to external disturbances such as turbulence. 
2. Aircraft controllability; the response of the aircraft to  actuation of the 

controls. 
3. Cockpit design; the ease with which instruments can be read; the comfort 

of the seat. 
4. View from the cockpit; on landing approach is a sufficiently clear view 

of the ground provided ? 
5. Mission; e.g. high-altitude cruise, landing approach in a crosswind. 
6. Pilot's background and emotional and physical state; the familiarity of 

the pilot with the present aircraft and mission; impaired functioning 
arising from emotional and physiological factors. 

7. External environment; visibility and weather conditions. 

The term handling qualities is used to refer to those characteristics of the 
aircraft which the pilot considers to influence the ease of performing the 
mission. Much of the work in the area of handling qualities has centered on 
the determination of the influence of aircraft stability and control. It is the 
aim of this research to establish general specifications, to ensure that future 
vehicles can complete their intended missions safely, efficiently, and with a 
minimum of pilot fatigue. 

THE RATING OF HANDLING QUALITIES 

To be able to assess aircraft handling qualities one must have a measuring 
technique with which any given vehicle's characteristics can be rated. In  
the early days of aviation this was done by soliciting the comments of pilots 
after they had flown the aircraft. However, i t  was soon found that a communi- 
cations problem existed with pilots using different adjectives to describe 
the same flight characteristics. These ambiguities have been alleviated 
considerably by the introduction of a uniform set of descriptive phrases by 
workers in the field. The most recent set (ref. 12.12) is referred to as the 
"Cooper-Harper Scale" where a numerical rating scale is utilized in con- 
junction with a set of descriptive phrases. This scale is presented in Table 12.4 
and is similar but not identical to previous scales developed separately by 
Cooper and Harper. Care must be taken in interpreting past research, to 
determine which scale the results are based on. To apply this rating technique 
it is necessary to describe accurately the conditions under which the results 
were obtained. In  addition it should be realized that the numerical pilot 
rating (1 to 10) is merely a shorthand notation for the descript,ive phrases 
and as such no mathematical operations can be carried out on them in a 
rigorous sense. For example a vehicle configuration rated as 6 is not necessarily 
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Table 12.4 

Cooper-Harper Rating Scale (Ref. 12.12) 

twice as bad as one rated a t  3. The comments from evaluation pilots are 
extremely useful and this information will provide the detailed reasons for 
the choice of a rating. 

Other techniques have been applied to the rating of handling qualities. 
For example, attempts have been made to use the overall system performance 
as a rating parameter. However, due to the pilot's adaptive capability, quite 
often he can cause the overall system response of a bad vehicle to approach 
that of a good vehicle, leading to the same performance but vastly differing 
pilot ratings. Consequently system performance has not proved to be a good 
rating parameter. A more promising approach involves the measurement of 
the pilot's physiological and psychological state. Such methods lead to 
objective assessments of how the system is influencing the human controller. 
The measurement of human pilot describing functions is part of Lhis technique. 

Pilot 
Rating 

1 

2 

3 

4 

5 

6 

7 

8 

9 

-- 
10 

Aircraft Characteristics 

Excellent; highly desirable 

Good; negligible 
deficiencies 

Fair; some mildly 
unpleasant deficiencies 

Minor but annoying 
deficiencies 

Moderately objectionable 
deficiencies 

Very objectionable but 
tolerable deficiencies 

Major deficiencies 

Major deficiencies 

Major deficiencies 

Major deficiencies 

Demands on the Pilot in Selected Task 
or Required Operation 

Pilot compensation not a factor for 
desired performance 

Pilot compensation not a factor for 
desired performance 

Minimal pilot compensation required 
for desired performance 

Desired performance requires 
moderate pilot compensation 

Adequate performance requires 
considerable pilot compensation 

Adequate performance requires 
extensive pilot compensation 

Adequate performance not attainable 
with maximum tolerable pilot 
compensation. Controllability not 
in question. 

Considerable pilot compensation is 
required for control 

Intense pilot compensation is 
required to retain control 

Control will be lost during some 
portion of required operation 
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12.6 FLIGHT SIMULATORS 

Research in the field of aircraft handling qualities is undertaken for two 
primary reasons. These are (i) to  formulate a set of design criteria which if 
met will ensure that a new flight vehicle will have adequate handling qualities 
and (ii) to  better understand how the various vehicle and mission parameters 
affect the human pilot. These problems are tackled by means of experi- 
mental programs involving trained pilots and actual aircraft or flight 
simulators, or through theoretical analyses involving human-pilot describing 
functions. Most of the recent research has been experimental work carried 
out with flight simulators. 

The flight simulator is a device that creates the illusion of flight to a certain 
extent for a pilot seated in its cockpit. This is achieved partly by con- 
structing the cockpit to  appear like that of the real aircraft. The simulator 
is then programmed to respond to the actuation of the controls in a fashion 
which resembles the response of the actual vehicle. This is accomplished by 
programming the vehicle's equations of motion on an analog or digital 
computer, using the pilot's control movements as the inputs to the computer 
system and driving the response system of the simulator with the computer 
output. The realism achieved with a given simulator depends to a great extent 
upon the visual and motion cues provided by the response system. The motion 
response of the simulator can range from none a t  all for fixed-base simulators, 
through limited motion in some degrees of freedom, to complete six-degree- 
of-freedom motion with a variable stability aircraft, which is in fact a flying 
simulator. The visual cues provided can include instrument displays, closed- 
circuit television representations of the outside world, or the full visual and 
instrument display provided by a variable stability aircraft. Figure 12.10 
depicts a typical simulator system. 

The advantages offered by the flight simulator to researchers in the field 
of handling qualities are many. With the simulator i t  is possible to isolate a 
single system parameter for study, allowing it to vary while holding all other 
parameters fixed. Situations that would involve an element of danger if a real 
aircraft were utilized can be simulated with no risk to life or equipment. 
The lower cost of operating the simulator and the control over environ- 
mental factors such as turbulence also favor the simulator. However, care 
must be exercised in interpreting the results of simulator studies. Since the 
simulator is usually only an engineering approximation to the actual flight 
system, the pilot must extrapolate his experience in the simulator in order 
to relate i t  to  an actual flight situation. The ability of a pilot to do this and 
hence achieve meaningful handling qualities ratings depends upon his 
previous flight and simulator experience. In  addition, care must be taken to 
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FIG. 12.10 Integrated simulator complex (from ref. 12.25). 

provide the pilot with the pertinent stimuli. For example, i t  would not make 
sense to use a fixed-base simulator to rate a vehicle in the performance of a 
mission which normally requires the pilot to sense vehicle motions. 

12.7 RESULTS OF HANDLING QUALITIES RESEARCH 
Research into aircraft handling qualities is aimed in part at  ascertaining 

which vehicle parameters influence pilot acceptance. I t  is obvious that the 
number of possible combinations of parameters is staggering, and conse- 
quently attempts are made to study one particular aspect of the vehicle 
while maintaining all others in a "satisfactory" configuration. Thus the 
task is formulated in a fashion which is amenable to study. The risk involved 
in this technique is that important interaction effects can be overlooked. 
For example, i t  is found that the degree of difficulty a pilot finds in controlling 
an aircraft's lateral-directional mode influences his rating of the longitudinal 
dynamics. Such facts must be taken into account when interpreting test 
results. Another possible bias exists in handling qualities results obtained 
in the past because most of the work has been done in conjunction with 
fighter aircraft. 

12.8 LONGITUDINAL HANDLING QUALITIES 

In investigating the handling qualities related to longitudinal dynamics, 
many workers in the field separate the problem into two parts, associated 
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FIG. 12.11 Effect of phugoid damping, c,, on pilot rating (from ref. 12.15). 

with the short-period response and phugoid response. Attempts are then 
made to correlate pilot opinion with the various parameters or with the 
characteristics of these two modes. 

First consider the phugoid response. This mode was discussed a t  length 
in Chapter 9, and approximations to the period and damping were given in 
Sec. 9.2. For conventional fixed-wing airplanes the period is very long and 
not a significant factor in pilot rating. The damping is important however, 
and some experimental results (ref. 12.15) are shown on Big. 12.11. These 
were obtained in flight under instrument conditions. As the damping of the 
phugoid mode decreases more attention must be devoted to controlling the 
associated low-frequency motion, which can be excited by movement of 
the aircraft controls or by gusts. It is seen that, generally speaking, a 
divergent phugoid mode (a negative 5,) must be avoided. The same study that 
produced these results found that under visual flight conditions, a reduction 
in the damping from .32 to  -.I2 had little influence on pilot ratings. 

Studies of the effect of the short-period response on pilot ratings have 
been made using variable stability aircraft (ref. 12.15). Although a range 
of results have been noted for various tasks and aircraft, the general pattern 
is as illustrated on Fig. 12.12. It shows a typical plot of pilot "iso-opinion" 
curves from such an experiment. The solid lines represent curves of constant 
pilot rating as the values of con and 5 are altered. The regions of satisfactory, 
acceptable, poor, and unacceptable handling qualities are indicated along 
with the pilot comments for the various areas in the unacceptable region. 

OTHER LONGITUDINAL HANDLING QUALITIES PARAMETERS 

Substantial disagreement among results based on correlating pilot ratings 
with short-period damping and natural frequency (ref. 12.16) has resulted 
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FIG. 12.12 Longitudinal short-period oscillation-pilot opinion contours (from ref. 
12.15). 

1.0 

in a search for more meaningful parameters. One such was derived by noting 
that the pilot's opinion of an aircraft's longitudinal dynamics is very much 
influenced by the response of the vehicle to control inputs. This in turn 
depends on terms in both the numerator and denominator of the longitudinal 
transfer functions, whereas the short-period characteristics appear in the 
denominator only [see (10.2,11)]. An important transfer function is the 
approximate one relating pitch rate response to elevator angle input, given 
by (10.2,llc and b) .  (See also Figs. 10.6, 10.3.) If we neglect CLa, CLk, and 
C,, in (10.2,12b) and convert to dimensional form, we get the approximation 

large control motion 
- Unacceptable 

- 
to maneuver, 
difficult to trim 

where q is in rad/sec, and s corresponds to d/dt, not d/df. o, (in radlsec) 
and 5 are, of course, the approximate short-period frequency and damping, 
respectively. The quantity (La/mV) in the numerator is the lead time constant 
in this response and has been identified as an important parameter for 
longitudinal handling qualities (ref. 12.31). In~ref. 12.16 it is argued that the 
appropriate correlation of pilot ratings is with the parameters shown in Fig. 
12.13. It is stated that when the aircraft load*factor response to angle of 
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1.0 Unacceptable @/ 
Satisfactory 

20 1 Unacceptable 

FIG. 12.13 Pilot ratings based on L,/mVo,  and n,/w, (from ref. 12.16). 

attack (n, = (aL/ W)/aa = La/ W) is less than 15 g/rad, pilot opinion correlates 
well with 

La and ( 
mVw, 

The importance of LJmV can easily be inferred. Figure 10.6 shows that 
the early part of the response to elevator separates clearly into two phases- 
an initial pitch-up to a nearly steady Aa, and a subsequent flight-path 
curvature associated with the lift increment AL = La Aa. The magnitude 
of the curvature is approximately ALlmV = (L,/mV) ha .  The changeover 
in correlating parameter a t  about n, of 15 appears to be due to the pilot's 
concern to control load factor a t  large n,, whereas he concentrates on flight 
path a t  low n,. Figure 12.13 shows iso-opinion curves based on the use of 
these parameters. 

An additional parameter has been developed based on the consideration 
of pilot comments and the physiology of the pilot (ref. 12.17). It is called the 
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"Control Anticipation Parameter" or CAP. The C A P  is defined to be the 
ratio of the instantaneous angular acceleration in pitch to the steady-state 
change in load factor when the pilot applies a step input to the longitudinal 
control. Thus 

C A P  = - 
An,, 

This theory is based on the fact that in order to make precise adjustments 
to the flight path, the pilot must infer from the initial attitude response of 
the vehicle, the ultimate response of the flight path. It is found that the 
best cue for sensing attitude response is the initial angular acceleration in 
pitch (q,) which the pilot senses through his inner ear. For precision control 
tasks the pertinent steady-state parameter is taken to be the change in 
steady-state load factor (An,,), which is related to flight-path curvature (see 
Sec. 6.10). 

It is found that if an aircraft has a C A P  which is too small, the pilot 
tends to overcontrol and rates the pitch response as sluggish. This comes 
about as follows. 

When the flight path requires adjustment the pilot moves the controls 
and monitors the effect of this action by noting the size of the qo generated. 
If the C A P  is too small no q, will be detected because it is below the threshold 
of the pilot's inner ear. Consequently he will apply more control input until 
a q is finally sensed. The result is an extremely large An,, and the desired 
response is exceeded. 

On the other hand, if the C A P  is too large, the pilot tends to undershoot 
his desired flight-path correct,ions, and rates the response as fast, abrupt, and 
too sensitive. This occurs because any slight pitch control inputs from the 
pilot generate a large q, which is interpreted as the prelude to a gross change 
in vehicle state and not the small desired change. As a result the pilot tends 
to reduce or reverse his pitch control input to avoid this, resulting in a steady- 
state response that is too small. 

The C A P  can easily be derived from relations previously given. q, is 
simply the initial pitching moment divided by I,, i.e. 

The steady-state load factor is obtained from (10.2,9), in conjunction with 
the short-period approximation (10.2,ll) (note that Gvs = 0 in this approxi- 
mation). The aerodynamic transfer functions are replaced by stability 
derivatives, we let s = 0, and neglect CL, and CL, to get the approximate 



Fra. 12.14 A comparison of the response of two aircraft (from ref. 12.17). 
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result for the static gains: 
C L ~  Knd = -K as 
C w  

Anss C L ~  Cmd - K  = . -  
Ad, nd 

ewe zy,; 
After conversion to dimensional form we get 

Anss - LaM* 
Ad, WIYwn2 

and 

The acceptable range in CAP extends upward from about 15 deg/sec2/g. 
The upper limit has not been determined, with good pilot ratings obtained 
from 25-50 deg/sec2/g. Bigure 12.14 compares the pitch response of two 
different jet fighters. Under the conditions which prevailed for this test, the 
F-105A with a CAP of 16 deg/secZ/g received an adverse rating while the 
B-84F was rated as "good" with respect to formation flying. 

SPEED STABILITY 

In addition to the vehicle's attitude response, the pilot also considers the 
speed stability of the aircraft when rating its handling qualities. This is 
especially true when performing such rectilinear maneuvers as the landing 
approach. In Sec. 11.5 it was shorn that the aircraft response to a disturbance 
AVO in forward speed could be written as AVoetlT. The response is convergent 
for T negative. Although no clear criterion for speed stability exists it appears 
that if in all other respects the aircraft is rated as satisfactory, then the pilot 
will rate the speed response as satisfactory if it is convergent with a time to 
half amplitude less than 35 see. However, it is found that under certain 
conditions a vehicle can be rated as acceptable even if the speed response is 
divergent, provided that the time to double amplitude is greater than 17 sec. 

LONGITUDINAL CONTROL SYSTEM CHARACTERISTICS ("'FEEL") 

The pilot commands longitudinal vehicle response mainly through control 
column inputs. Hence it is found that the characteristics of the control system 
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FIG. 12.15 Effect of stick force and stick movement per g on pilot opinion (from ref. 
12.15). 

influence the handling qualities of the vehicle. An otherwise satisfactory 
vehicle cdn be rated as poor due to a control system that does not "feel" 
right to the pilot. Figure 12.15 shows the manner in which pilot rating varied 
with stick movement per g and stick force per g in an aircraft with an irre- 
versible control system. It is seen that there is only a relatively small region 
where a satisfactory rating is achieved, indicating the importance of the 
proper selection of control system characteristics. The studies which produced 
these results also determined that pilots do not object to break-out or 
frictional forces if they are not large when compared to the stick force per g. 

12.9 LATERAL-DIRECTIONAL HANDLING QUALITIES 

Generally speaking, lateral-directional control is more complex than 
longitudinal control. This, of course, is due to the fact that two axes of 
rotation are involved, leading to cross-coupling effects and the use of two 
primary control surfaces. As a result many groups of parameters are presently 
being studied to determine their correlation with pilot ratings. The following 
is intended to introduce the reader to some of these handling qualities 
parameters and to indicate the trends of research. 

The primary lateral-directional control task facing the pilot is the control 
of bank angle through the aileron control system. The transfer function 
relating bank angle response to aileron input can be derived from (5.1 1 , lo)  by 
putting A z ,  = L6 Ad,, A R  = N6 Ada and solving for the ratio $/As,. The 
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result is 

Here the factors in the denominator represent the spiral mode (time constant 
T,), the roll mode (time constant TR), and the lateral oscillation of radian 
frequency (ma) and damping (5,). The values of these four constants come from 
the solution of the eigenvalue problem, discussed a t  some length in Chapter 9, 
where approximate solutions for them are also given. The user of the approxi- 
mations should note their restricted range of validity. The numerator 
constants are given below with the aerodynamic transfer functions replaced 
by the corresponding stability derivatives, and with Y ,  = Y,  = y, = 0. 

where 

~ , ' = ( ~ N ; + N ~ ) - - ~ ( L ~ + ~ L ; )  m 4 m ( c )  

A partial list of parameter groups used in handling qualities studies includes 

Wp/md, 5dmd, TR, Ts, 1#//31, I#/v~l, and@ where (WE = vJz ) .  

SPIRAL MODE 

The spiral mode time constant, T,, determines the aircraft's tendency to 
maintain a given course when cruising. It is generally found that in the case 
of a divergent spiral mode, pilots will rate the aircraft as satisfactory provided 
that ITs! > 20 sec. 
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ROLL CONTROL 

If o, = cod and 5, = 5, so that the two quadratic terms in (12.9,l) 
cancel, or if only the initial vehicle roll response is considered, then for cases 
where 1/T, is negligible the roll-to-aileron transfer function reduces to 

which corresponds to the single-degree-of-freedom approximation (9.7,7). 
It has been found that this transfer function affects pilot ratings significantly. 
When considering this response i t  is convenient to look at closed-loop and 
open-loop control situations separately. Closed-loop control tasks involve the 
continuous monitoring of system error by the pilot and his responses to this 
stimulus. Examples of this type of control include formation flying, instru- 
ment flight, and landing. Open-loop control differs in that a previously- 
learned pattern is utilized to respond to a particular flight situation. No 
continuous monitoring of system error as such is involved and often the 
maneuver is of very short duration. Examples of this form of control are 
obstacle avoidance, rapid turn entry, and recovery from sudden upsets. 

CLOSED-LOOP ROLL CONTROL 

The pilot model of Sec. 12.2 has been used by Ashkenas (ref. 12.21) to 
study the handling qualities associated with the closed-loop control of bank 
angle. This application demonstrates the use of pilot models in analyzing 
the pilotlaircraft system. Figure 12.16 presents the closed-loop situation. 
It is assumed that the pilot is functioning in a compensatory fashion to 

1 
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I 
I 

e(t) I 
I > 
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FIG. 12.16 Compensatory closed-loop roll control. 
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control external disturbances [represented by il(t)] to the vehicle's bank 
angle. [Note that this control situation is similar to that of Fig. 12.3b with 
il(t) = -i(t).] In an attempt to achieve the equalization outlined in Sec. 
12.2 the pilot adopts a form of describing function that reduces the combined 
transfer function of the pilot and aircraft as nearly as possible to K/s.  This 
results in an attempt by the pilot to generate a lead equalization term to 
cancel the l / (TRs + 1) lag present in the aircraft. In  addition, ifthe analysis 
is restricted to frequencies near the system crossover frequency, it is found 
that to a reasonable approximation all the dynamicsassociatedwith the pilot's 
neuromuscular system can be lumped in with the effective'time delay as 7,. 

This is found to be sufficient for the present application. The forward-loop 
transfer function is thus of the form 

I$ - K,e-'ES(TLs + 1 )  - A6TR 
Y(s )  . - - (12.9,4) 

Ma ~(TRs + 1 )  
which reduces to 

if the pilot can generate T L  = TR.  It is found that human pilots are generally 
limited to T L  i 5 see because of physiological factors. In  addition, as TR is 
reduced to zero it is found that pilots do not attempt to keep T L  equal to 
TR.  It appears that as soon as the phase lag contributed by T R  becomes 
acceptably small the pilot no longer feels the need to compensate for it. 
Figure 12.17 shows the T L  adopted by pilots for a range of TRts. 

In  this isolated control situation, it would appear that the pilot rating 
could depend upon closed-loop system performance, the gain generated by 
the pilot, K,, and TL. Since the forward-loop transfer function always appears 

I T~ sec 

F I ~ .  12.17 Approximate TL vs. TR relationship (from ref. 12.21). 
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to  be approximately K/s, all systems studied will tend to have similar 
response characteristics. If an experiment is performed wherein TR is varied 
and the pilot is allowed to select the system gain Ad a t  each step so as to be 
optimum in his opinion, then the rating assigned to each configuration 
should be mainly influenced by the T L  required of the pilot. The results of 
such an experiment (ref. 12.21) are given in Fig. 12.18. Here AR is the increase 
in pilot rating associated with T L  above the basic rating for the complete 
vehicle. The rating becomes less favorable as the pilot is required to generate 

lead (the generation of lead can be thought of as an attempt to anticipate 
the future input signal). 

The optimum gain A+ selected by the pilot for a particular value of T, 
is assumed to be uniquely related to the pilot gain generated a t  the crossover 
frequency, o,. At crossover I Y(icoc) 1 . I$/AFa(icoc) 1 = 1, and for a particular 
value of TR,  the optimum value of pilot gain, I Y(ioc)lopt, is assumed to be 
unique. Based on these assumptions the gain A* selected by the pilot can be 
found from (12.9,4) to be 

OPEN-LOOP ROLL CONTROL 

When investigating open-loop roll control i t  is appropriate to consider the 
ratio of the roll time constant T R  to some typical maneuver time t,, and/or 
the maximum roll acceleration following a unit step aileron input. The Laplace 
transform of the roll acceleration following a unit step aileron input (A8a = 

11s) can be found from (12.9,3) 
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The maximum roll acceleration occurs a t  t = 0, and from the initial value 
theorem is 

TEA,  $(0) = lim s - 
,+, T&?+ 1 

Figure 12.19 gives the pilot rating boundaries obtained from roll response 
studies of fighter-type aircraft (ref. 12.15). The lower boundary on these 
iso-opinion curves is blamed on oversensitivity of the controls and probably 

0.1 0.5 1.0 5 11) FIG. 12.19 Pilot rating of open-loop roll re- 
TR sec sponse (from ref. 12.15). 

has the same basis as the poor ratings achieved with overly large values of 
the CAP discussed in the section on longitudinal handling qualities. 

DUTCH-ROLL CHARACTERISTICS 

The Dutch-roll oscillation may. from a piloting standpoint be termed a 
nuisance factor. I ts  oscillatory nature is not purposely induced to perform 
any maneuver, and its presence may hinder the maintenance of precise 
flight-path control. Originally attempts were made to correlate pilot opinion 
with the ratio $/j3 of the eigenvector and the damping of the oscillation. 
However, when it was found that pilots desired more damping for a given 
$/j3 a t  lower flight speeds, the parameter $/(uo/3) or $12) was introduced to 
replace $/P. Additional studies indicated that the altitude was also important, 
with more damping being desired at  higher altitude. This lead to the us. 
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FIG. 12.20 Pilot opinion boundaries for Dutch-roll characteristics (from ref. 12.15). 

of +/v J p/po or +/vE. Further refinement then replaced cycles to half amplitude 
by the inverse of the time-to-half-amplitude, l/Te Figure 12.20 illustrates 
the pilot rating boundaries plotted on a 1/T4 vs. 4/vE diagram. This is 
typical for fighter-type aircraft. 

As is often the case in the field of handling qualities, this is not the final 
answer. In fact some results can be shown to correlate better with bank 
angle response to rudder input and root-mean-square bank angle response 
to random gust inputs. 

od/od AS A HANDLING QUALlTiES PARAMETER 

The ratio od/od is a significant parameter when studying lateral-directional 
handling qualities. If [cod, cd] = [o,, c,] then the quadratic factors in the 
numerator and denominator of (12.9,1) cancel. Or, to put it another way, the 
associated poles and zeros exactly cancel. The major consequence of such an 
occurrence is that the 4 response to aileron becomes non-oscillatory, a very 
desirable circumstance. Another consequence would be the disappearance 
of the valley-peak sequence in the frequency response for +/a,, as illustrated 
in Fig. 10 .12~ .  When this special circumstance is not the case, then aileron 
inputs produce oscilIatory responses. The cancellation of the quadratic 
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FIG. 12.21 Pilot ratings for a range of oglwd (from ref. 12.21). 

factors depends mainly on the values of og and cod and less on C4 and C,. 
Hence the importance of O,$/O~ as a parameter. 

Detailed analysis shows that for wJo,  > 1 favorable yaw is generated, 
the opposite being true for cog/o, < 1. The yaw that occurs determines the 
amount and direction of rudder deflection needed to execute a coordinated 
turn. In  addition, closed-loop bank angle control is difficult when odod > 1. 
The general trend of pilot rating with oJo, is shown in Fig. 12.21. The 
general and marked preference for og/od = 1 is apparent. Figure 12.22 gives 
typical pilot iso-opinion curves for a range of (0g/co,)2 and 5,. These curves 
indicate that, depending upon the value of c,, the optimum value of ob/od 
may differ from unity. 

ld 

FIG. 12.22 Pilot iso-opinion curves for lateral-directional aontrol (from ref. 12.21). 
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ROLL CONTROL SYSTEM CHARACTERISTICS ("FEEL") 

The roll control system dynamics are important in establishing the handling 
qualities of an aircraft. From the small amount of research performed in 
this area the following general remarks apply: 

1. Full aileron deflection with a wheel-type control should not require a 
rotation exceeding 90'. 

2. Control sensitivities as high as 0.5 deg/sec rate of roll per degree of 
wheel displacement can be satisfactory. 

3. The force required to apply full control should be about 40 lb. 

12.10 HANDLING QUALITIES REQUIREMENTS 

As a result of inability to carry out completely rational design of the 
man-machine combination, it is customary for the government agencies 
that are responsible for the procurement of military airplanes, or for licensing 
civil airplanes, to specify compliance d t h  certain handling qualities require- 
ments (e.g. refs. 12.26 to  12.28). 

These requirements have been developed from extensive and continuing 
flight research. In  the h a 1  analysis they are based on the opinions of research 
test pilots, substantiated by careful instrumentation. They vary from country 
to country and from agency to agency, and, of course, are different for 
different types of aircraft. They are subject t o  continuous study and modifi- 
cation in order to keep them abreast of the latest research and design infor- 
mation. 

The purpose of these regulations is to ensure the safety of operation of new 
aircraft. If the rules are too lenient or incomplete the result can be degraded 
performance, poor flight safety, and perhaps an inability to complete the 
intended mission. On the other hand, if the rules are too stringent the penalties 
can be degraded performance, added complexity, and reduced economic 
efficiency. When a new aircraft is designed with novel features and per- 
formance characteristics, the old regulations are not always sufficient to cover 
the situation, and subsequent prolonged vehicle flight testing is then required 
before i t  can be certified. In  the past, regulations have merely specified minima 
for the various aspects of handling qualities. It is anticipated that ongoing 
research in this field will lead to the specification of optimum values for the 
various handling qualities parameters and the definition of acceptable ranges 
for these parameters. 
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The following is intended to show the nature, not the detail, of typical 
handling qualities requirements. Most of the specific requirements can be 
classified under one of the following headings. 

CONTROL POWER 

The term control power is used to describe the efficacy of a control in 
producing a range of steady equilibrium or maneuvering states. For example, 
an elevator control which by taking positions between full up and full down 
can hold the airplane in equilibrium a t  all speeds in its speed range, for all 
configurations and C.G. positions, is a powerful control. On the other hand 
a rudder that is not capable a t  full deflection of maintaining equilibrium 
of yawing moments in a condition of one engine out and negligible sideslip 
is not powerful enough. The flying qualities requirements normally specify 
the specific speed ranges that must be achievable with fuIl elevator deflection 
in the various important configurations, and the asymmetric power condition 
that the rudder must balance. They may also contain references to the elevator 
angles required to achieve positive load factors, as in steady turns and pull-up 
maneuvers ("elevator angle per g," Sec. 6.10). 

CONTROL FORCES 

The requirements invariably specify limits on the control forces that must 
be exerted by the pilot in order to effect specific changes from a given 
trimmed condition, or to maintain the trim speed following a sudden change 
in configuration or throttle setting. They frequently also include requirements 
on the control forces in pull-up maneuvers ("stick force per g," Sec, 6.10). 

STATIC STABILITY 

The requirement for static longitudinal stability (see Chapter 6) is usually 
stated in terms of the neutral point (defined in Sec. 6.3). It is usually required 
that the relevant neutral point (stick-free or stick-fixed) shall lie some distance 
(e.g. 5 % of the mean aerodynamic chord) behind the most aft position of 
the C.G. This ensures that the airplane will tend to fly at  a constant speed 
and angle of attack as long as the controls are not moved. 

The requirement on static lateral stability is usually mild. It is simply 
that the spiral mode (see Chapter 9) if divergent shall have a time to double 
greater than some stated minimum (e.g. 4 sec). 
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DYNAMIC STABILITY 

Generally the requirement on dynamic stability takes the form of a specifi- 
cation on the time to damp to half amplitude. The damping required for 
good flying qualities varies with the period. 

STALLING AND SPINNING 

Finally, most requirements specify that the airplane's behavior following 
a stall or in a spin shall not include any dangerous characteristics, and that 
the controls must retain enough effectiveness to ensure a safe recovery to 
normal fight. 
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13.1 INTRODUCTION 

Of those obstacles with which nature confronts man in his use of the air 
as a medium of transportation, two are transcendent in importance-poor 
visibility that prevents him from seeing where he is going, and turbulent 
movement of the surrounding air that disturbs his vehicle and its fight path. 
To overcome these obstacles has always been and continues to be a major 
challenge to aviation. Poor visibility is associated with both darkness and 
weather, turbulence with weather alone. The former of these obstacles has 
to a great extent been overcome-modern navigation techniques permit blind 
flying with adequate safety for all but the critical phases of landing and 
take-off, and there is hope that the safety margins for these too will ultimately 
be acceptable. 

The subject of this chapter is the second obstacle, turbulence. The motion 
of an aircraft in turbulence is akin to that of a ship on a rough sea, or an 
automobile on a rough road. It is subjected to buffeting by random external 
forces and as a result the attitude angles and trajectory experience random 
variations with time. The time scale and intensity of these responses are 
governed by the scale and intensity of the turbulence, as well as the speed 
and characteristics of the vehicle. Their effect is to produce fatigue in both 
the pilot and the structure, to endanger the structural integrity of the air- 
craft, to produce an uncomfortable, possibly even unacceptable, ride for 

529 
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Control 
system 

FIQ. 13.1 Breakdown of the turbulence problem. 

I 

the passengers and cargo, and to impair the precise control of flight path 
needed for collision avoidance and safe landing. 

To understand and analyze these responses, which is to provide the basis 
for ameliorating them, we dissect the total phenomenon into several parts, 
as illustrated in Pig. 13.1. The first is to  describe the turbulence itself, the 
"output" of this description being the velocity field in which the airplane 
is immersed. Next, i t  is necessary to determine how these velocities result in 
aerodynamic forces and moments; these in turn become inputs to the 
mechanical/structural system whose mathematical modelling was the subject 
of Chapter 5. Finally, the motions and stresses that result serve to define 
the problems faced by the structure and the pilot. The diagram indicates 
that the pilot feeds back into the dynamic system via the controls-a feature 
that cannot be overlooked for realistic analysis. A study of all the problems 
embraced by the figure clearly spans the disciplines of meterology, aero- 
dynamics, vehicle and structural dynamics, metal fatigue, and human 
factors. We make no attempt here to go in depth into all of these! The aim 
of the following is to extend the mathematical models previously given to 
embrace a description of the turbulence and the inputs provided by it. This 
model then provides the tool for calculating the responses of interest for 
any design or operational problem. 

Since turbulence is a random process that cannot be described by explicit 
functions of time, only a statistical, probabilistic approach can be taken. 
The basic random-process theory needed was presented in Secs. 2.6 and 3.4, 
and the following relies heavily on that material. In particular the role of 
input spectra in computing output spectra should be recalled at  this point 
[see (3.4, 48 to 51)], and the role of output spectra in calculating response 
probabilities (Sec. 2.6). 
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13.2 DESCRIPTION OF ATMOSPHERIC TURBULENCE 

The total velocity field of the atmosphere is variable in both space and 
time, composed of a "mean" value and variations from it. The mean wind 
is a problem primarily for navigation and guidance and is not of interest 
here. We eliminate it  by choosing as our reference frame the atmosphere- 
fixed frame FA (see Sec. 4.2.4) relative to which the mean motion is zero. 
Let the velocity of the air relative to FA at position r = [xlx,x3]~ and time 
t be 

~ ( r ,  t) = [ulu2u31T (13.2,l) 

Then ui(r, t) are random functions of space and time, i.e. we have to deal 
with the statistics of a random vector function of four variables (x,, x,, x,, t ) .  

Associated with any given point r and time t there is a 3 x 3 correlation 
matrix (second-order tensor) 

As indicated, it is the ensemble average of the product of ui a t  r and t with 
uj  at the different point r + 5 and the later time t + 7. The associated four- 
dimensional Fourier integral is the 3 x 3 matrix of four-dimensional spectrum 
functions 

The inverse relation for Fourier integrals gives 

The functions Rij and Oij serve (together with the assumption of normality) 
to describe the needed statistics of the turbulence. From them all the 
pertinent results can be derived (see Sec. 2.6); a principle objective of re- 
search into atmospheric turbulence is to ascertain their forms, and how their 
parameters depend on meteorological conditions, terrain, etc. 

Rij(O, T )  should not be confused with the time-delayed correlation measured by a 
fixed instrument in a flow passing it  a t  a mean speed U .  
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SIMPLIFYING ASSUMPTIONS 

Although there is some evidence that atmospheric turbulence is not 
necessarily normal, or Gaussian (ref. 13.1), many researchers have concluded 
that it is for practical purposes in many situations. There are great gains in 
simplicity in calculating the probabilities of exceeding given stress or motion 
levels if the process is Gaussian (see Sec. 2.6), for then one needs only the 
information given by the spectral distribution of the variables in question. 
We therefore assume that the random functions we have to deal with have 
normal distributions. (This assumption only enters when probabilities are 
being calculated, not correlations and spectra.) 

The most general case, covered by (13.2,2 to 4) allows the turbulence 
statistics to vary from point to point and time to t ime4.e.  Rij and Oi j  are 
functions of the base point r and base time t. One assumption made almost 
universally is that there is no dependence on t ,  i.e. that the turbulence is a 
stationary process. A second widely employed assumptionis that the turbulence 
is effectively homogeneous i.e. that Rij and O i j  are independent of r a t  least 
along the path flown by the vehicle. At high altitudes, turbulence appears 
to occur in large patches, each of which can reasonably be taken to be 
homogeneous-but with differences from patch to patch. At low altitudes, 
near the ground, there are fairly rapid changes in the turbulence with altitude. 
However, for airplanes in nearly horizontal flight, homogeneity along the 
flight path is a reasonable approximation. 

In  general, the functions Rij and Oi j  depend on the directions of the axes 
of FA. This is especially so in the ground boundary layer. When this de- 
pendence is absent, and the evidence is that this is the case at  high altitudes, 
then thc turbulence is isotropic, i.e. all the statistical properties a t  a point are 
independent of the orientation of the axes. In  this case i t  follows that the 
three mean-square velocity components are equal, i.e. the intensity is 

When the turbulence is stationary and homogeneous i t  is also ergodic, so 
that time averages can replace ensemble averages-a matter of no small 
importance for experimental work. 

Finally, the last simplifying assumption relates not so much to the 
turbulence itself but to the nature of the present problem. Airplanes fly for 
the most part a t  speeds large compared to the turbulent velocities and to 
their rates of change. Thus the vehicle can traverse a relatively large patch 
of turbulence in a time so short that the turbulent velocities have not had 
time to change very much. This amounts to neglecting t in the argument 
of u(r, t), i.e. to  treating the turbulenceas a frozen pattern in space. This 
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assumption is known as "Taylor's hypothesis." Its consequence is that 

5 + 5 and & ( a ,  m )  -t e,,(Q) 

and the Fourier integrals of (13.2,3) are triple rather than quadruple. The 
problem of computing aerodynamic forces and vehicle responses is corre- 
spondingly simplified. 

Finally, then, the simplest model we can obtain is of homogeneous, 
isotropic, Gaussian, frozen turbulence. This is the model most commonly 
used for analysis of flight outside the ground boundary layer. Unfortunately, 
the strong anisotropy of boundary layer turbulence makes it unsuitable for 
landing and take-off; and for hovering flight the assumption of frozen 
turbulence is clearly also invalid. 

Batchelor (13.2) has shown that in isotropic turbulence R,(g) can be 
expressed in terms of two fundamental correlations, f (5 )  and g ( t ) ,  viz. 

where 6 = 151, d,,. is the Kxonecker delta, and c2 is given by (13.2,5). It 
should be observed that R,,. is zero whenever i # j and either ti or ti vanishes, 
so that Rij(0) = 0 for i # j. Other situations are illustrated in Fig. 13.2, a 
wing-iin system; the correlation of u, at  A with either u, or u, at  R vanishes 
because 6, and 6, are both zero, but that of u, aft A with u, a t  C is not zero 
because 6; and 5;; are both nonzero. Furthermore, the equation of continuity 
for an incompressible fluid imposes the condition 

f (5 )  is known as the longitudinal correlation, typified by Rll(5,,0, 0 )  and is 
associated with the condition illustrated in Fig. 13.3a. g ( 5 )  is the lateral 

FIG. 13.2 Illustrating vanishing and nonvanishing correlations. 
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FIU. 13.3 Correlations in isotropic turbulence. (a) Longitudinal correlation, f(E)  = 

(uu'). ( b )  Lateral correlation, g ( t )  = (uu'). (c) Typical forms off and g. 

correlation, typified by R,,(O, E,, 0 )  and is associated with the condition 
illustrated in Fig. 13.3b. The typical forms of these correlations are shown 
in Pig. 13.3c, when normalized to unity at = 0. 

The spectrum function in isotropic turbulence is expressible in terms of 
the basic energy spectrum function E(Q),  i.e. 

E(Q) is a scalar function that describes the turbulent energy density as a 
function of wave number magnitude, 52 = IS21 such that 
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As with Rii, the spectral density Oij is zero whenever i # j and Qi or Qj 
vanishes. Thus 0,.(0) = 0 for i # j, and for many special values of the wave 
number vector. 

The mean product of two velocity components a t  one point in frozen 
turbulence is R,.(O), which is from (13.2,4) (for frozen turbulence, cc, and 
T do not appear, and i t  is a triple integral) 

m 

uiu,. =JjpiSSe,,(Q1, Q,, 4) dQ, dQ, dQ3 (13.2,9) 

-m 

Integration successively w.r.t. Q3 and Q, yields the two-dimensional (Y) 
and one-dimensionul (@) spectrum functions, i.e. 

where 

Note that the mean-square value of any velocity component is [cf. (2.6,11)] 

There is a more direct physical interpretation of the one-dimensional spec- 
trum functions than the formal one given above. In homogeneous frozen 
turbulence consider the measurement of ui and uj along the x, axis (corre- 
sponding to measurement in flight along a straight line, or a t  a fixed point 
on a tower when the frozen field sweeps by i t  with the speed of the mean 
wind). The corresponding correlation is Rij([,, 0,O) and its one-dimensional 
transform is aij(Q1) i.e. 

Furthermore, if the x, axis is traversed at  speed U (or the wind past the tower 
has speed U ) ,  then 6, = UT, where T is the time interval associated with the 
separation ll. 

Corresponding to the two basic correlations f(f)  and g(5 )  for isotropic 
turbulence, are their two Fourier integrals, the longitudinal and lateral 
one-dimensional spectra, i.e. @,,(Q,) and @,,(Q,), respectively. By virtue of the 
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relation between f and g, Batchelor shows that 

The isotropy, of course, requires the symmetry relations 

Qii(Qj) = @,,(Q,) if i # j 
= @,,(Q,) if i = j (13.2,15) 

Most of the experimental information collected about atmospheric turbulence, 
on towers and by aircraft, is in the form of the above two one-dimensional 
spectra. 

SPECTRAL COMPONENT OF TURBULENCE 

We showed in Sec. 2.6 that a one-dimensional random function could be 
represented as a superposition of sinusoids (2.6,4). The analogous relation 
for three-dimensional turbulence is 

which indicates that the individual spectral component is a velocity field of 
the form exp i(Q,x, + Q2x2 + Q3x3) and amplitude dC. The triple integral 
signifies that integration is over - oo to  + oo in each of the wave number com- 
ponents; or to put i t  another way, individual sinusoidal waves of all possible 
wave numbers are superimposed to make up the turbulent field. The in- 
dividual spectral component has been shown by Ribner (ref. 13.3) to be an 

FIG. 13.4 Sinusoidal wave of shearing motion. (After H. S. Ribner, ref. 13.3.) 
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inclined shear wave as illustrated in Fig. 13.4. The velocity vector is per- 
pendicular to the wave number vector, and is constant in planes normal to 
it. It is no more surprising that a superposition of waves like that shown can 
represent turbulence than that an infinite Fourier series can represent an 
arbitrary random function of time. 

The spectral component in two dimensions, say Q, and Q,, has the form 
exp i(Q,x, + Q,z,) ; and is the sum (more properly integral) of all the three- 
dimensional waves having the given values Q,, Q,, but differing Q,. It can 
be pictured as in Fig. 13.5, which shows the node lines and the distribution 

FIG. 13.5 Elementary spectral component in two dimensions. (After H. S. Ribner, ref. 
13.4.) 

of u, through a section of the wave. The two-dimensional wave number vector 
is Q' = [a,, !2,IT, and is seen to lie at  an angle 8 to the z, axis. The wave- 
length is 1 = 2ii-/Q' and associated with the components of Q' are the wave- 
lengths along the coordinate axes, A, = 2ii-/!2, and 1, = 2ii-/Q,. 

Finally, the one-dimensional spectral component is a sinusoid on one axis, 
e.g. ei"l"l, and is the sum of all two-dimensional components having the 
same Q, or 1,. This is the ,familiar spectral component of one-dimensional 
Fourier analysis. 

INTEGRAL SCALE 

There is an intuitive notion of the scale of turbulence. Clearly there are 
significant differences of "size" between the turbulence in the wing boundary 
layer, in the wake of the airplane, and in the atmosphere itself. These differ- 
ences are quantified by a definition of integral scale derived from the corre- 
lation function. Thus let 

1 L. .  = - at, 23 
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be a line integral on the ti axis. It might be called "the j scale of the i velocity 
component." There are in general nine such scales, e.g. for u, measured along 
the xl axis, or u, measured along the x, axis, etc. 

A second notion of scale derives from the spectral representation of 
turbulence. The wavelength at  which the energy density peaks (see Fig. 13.6) 
is also a scale parameter, and for any given spectrum shape is uniquely 
related to L (defined below). 

In  isotropic turbulence, only two different scales are found, associated 
with the basic correlations f and g, and these are of course simply the areas 

Structure I 

FIG. 13.6 One-dimensional spectra. Isotropic turbulence. Scale L = 5000 ft. 

under the f and g curves. Because the maximum ordinate is unity, Lij is 
equal to the width of a rectangle that contains the same area as the corre- 
lation curve4.e. it is a measure of the spatial extent of significant correlation. 
The two scales are 

L = Lij, i = j = area under f ( t )  = longitudiml scale 

L' = Lij, i # j = area under g(t) = lateral scale 

The continuity condition (13.2,7) yields L = 2L'. 
The situation with respect to scale is unfortunately more complicated in 

the ground boundary layer where isotropy does not hold. 

MODEL OF HIGH-ALTITUDE TURBULENCE 

The experimental data on turbulence in clear air and in thunderstorms, 
and from altitudes below 5000 to 40,000 ft have been reviewed by Houbolt 
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et al. (ref. 13.5): They have examined it from the standpoint of scale, in- 
tensity, shape of one-dimensional spectra, homogeneity, isotropy, and 
normality. Their general conclusion is that an adequate model for analysis 
purposes is the simplest one described above-isotropic, homogeneous, 
Gaussian, and frozen. The intensity o varies from very small to as much as 
16 fps, and the scale is large, typically of order L = 5000 ft. The one- 
dimensional spectrum function that best fits the data for the vertical com- 
ponent of turbulence is the von KkmAn spectrum 

This spectrum function yields @ - a,-% as Ql -+ co, a condition required 
to satisfy the Kolmogorov law in the so called inertial subrange (ref. 13.6). 
The energy spectrum function and some useful two- and one-dimensional 
spectra? of the von KQrmAn model are 

@22(%) = @33(%) ( f )  
The inverse Fourier integrals of Ql1 and @,, provide the associated corre- 

lation functions (ref. 13.5). 

t Note that the spectra used herein are two-sided, such that for example o2 = 

@(al) dQl. In ref. 13.5 and in many others, one-sided spectra are used that are 
double those herein, and the integration is from zero to infinity. 
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where 5 = t/(aL), and I?, K denote gamma and Bessel functions, respectively. 
With the typical value L = 5000 ft, the longitudinal and lateral one- 

dimensional spectra are as shown in Fig. 13.6. With this form of plot- 
ting, Q@ vs. log,,Q, the area under an element of the curve is dA = 

const x Q@(l/Q) dQ = const x @(Q) dQ which is proportional to the contribu- 
tion of the bandwidth dQ to c2. Hence the shape of the curve truly shows 
the turbulent energy distribution. 

The peak of Q,@,, occurs a t  LQ, = 1.33, which shows directly how scale 
affects the spectrum. It also yields the "dominant wavelength," i.e. 

Thus for turbulence of 5000 f t  scale, the dominant wavelength is about 44 
miles, and the energy level is down by a factor of 25 a t  a wave length of 
100 ft, the order of the size of an airplane. 

For comparison, the ranges of Q associated with typical rigid-body and 
structural-mode frequencies are indicated on Fig. 13.6. These show what 
relative excitation levels of these modes are to be expected from turbulence 
of this scale. The spectrum shifts without change of shape to the right for 
smaller L and to the left for larger. For example a t  a scale L = 500 ft, the 
spectra move to the right by one decade inQ, and by two decadesfor L = 50 ft. 
This drastically alters the relative intensity of excitation of the various 
rigid-body and elastic modes. We shall see later that the difficulty of com- 
puting the response in any mode is very much affected by the wavelength 1 
associated with it. If very large compared to the dimensions of the airplane, 
the simplest analysis results. On the other hand, for structural modes of 
relatively short wavelength this condition is not met, and more sophisticated 
analysis is needed. 

MODEL OF LOW-ALTITUDE TURBULENCE 

Turbulence near the ground is of the boundary-layer variety (see Fig. 9.36), 
being variable with height and anisotropic. A model for this case should 
ideally give the following : 

(i) Variation of mean wind with height as function of ground roughness. --- 
(ii) Variation with height of uI2, u,,, u,,. 

(iii) Variation with height of all significant scales. 
(iv) The form of the spectrum function Otj, or the correlation function Rij. 

Since the scales are much smaller than a t  high altitude, it becomes more 
important to have the two-dimensional spectrum functionsYij(Q,, Q,), which 
enable both streamwise and spanwise variations of turbulent velocity to be 
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taken into account. The anisotropy also leads to the nonvanishing of the 
correlation R,, = (u,u3) (where x, is in the wind direction and x, vertical), 
which is simply related to the turbulent shear stress (Reynolds stress) in 
the boundary layer. 

An interesting fact about low-altitude turbulence is the existence of a gap 
in the spectrum at  a rather useful location. There is considerable evidence 
to show that the spectrum of wind speed measured by van der Hoven is 
representative, Fig. 13.7. This is a spectral density of horizontal wind speed 
taken as a function of time at a fixed point. The gap occurs for periods 

Hours 100 10 1 0.1 0.01 0.001 

F I ~ .  13.7 Schematic spectrum of wind speed near the ground estimated from a study 
of van der Hoven (1957) (from ref. 13.6, p. 43). 

greater than 6 min, or frequencies less than 10 cycles per hr. The lobe on 
the right corresponds to the turbulent energy of interest for flight (cf. Fig. 
13.6). 

The extensive information available on the wind-induced turbulence near 
the ground-much of it inconclusive and even contradictory-has recently 
been reviewed in refs. 13.7, 13.8. From these we adopt the following model 
as a reasonable representation of presently-available information: the 
turbulence is Gaussian, stationary, and homogeneous w.r.t. horizontal 
translations; it is anisotropic, but the one-dimensional spectra display 
isotropic behavior at the highest wave numbers; the turbulence is symmetric 
w.r.t. vertical planes. 

VELOCITY PROFILE, MEAN WIND: 
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where W = mean wind, h = height above ground, WG and hG are the speed 
and height outside the friction layer, and cr and h, depend on surface 
roughness (see Fig. 9.36). 

COMPONENT INTENSITIES: 

In  the layer below about 300 f t  : 

where oi2 = (ui2), x, is in the wind direction, and x3 is vertical. Above this 
height the oi tend toward equality a t  about 1000 ft. 

SPECTRUM SHAPES: 

The one-dimensional spectra are given by the von KkmAn equations 
(13.2, 16 and 17e), with G in cD, replaced by oi. Thus because of (13.2,20) 
there are three different one-dimensional spectra. 

SHEAR AND CROSS SPECTRA: 

The turbulent shearing stress in the boundary layer results in nonvanishing - - - 
ulu3, but symmetry requires u1u2 = u2u3 = 0. The data suggests 

The one-dimensional cross spectrum <D13(Ql) is taken to be real, and given 
by (ref. 13.8) 

in which a representative value of yo is 0.5. 

INTEGRAL SCALES: 

For the boundary layer as a whole. 
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Above about 200 ft, slightly better values are given by 

13.3 THE INPUT TO THE AIRPLANE 

The input to the airplane is the set of incremental aerodynamic forces 
and moments that derive from the turbulence-six associated with the 
rigid-body degrees of freedom and others with the elastic degrees of freedom. 
All of these inputs are, of course, random functions of a single variable, 
time, and are described statistically by the methods previously given. 
Once they are known, the problem of calculating system response is relatively 
routine. Let us illustrate the structure of the problem with a linear/invariant 
aerodynamic model. Let g be a vector (g for "gust") that somehow defmes 
the atmospheric velocity field (specific forms for g are given below), let f 
be the associated aerodynamic force vector, and let T be a matrix of "gust 
transfer functions" that relates them: 

The determination of the input then consists of two parts-defining g and 
finding the elements of T. When both of these are known, (13.3,l) yields 
the force vector, which can then be incorporated into the vehicle system 
equations in a more or less straightforward manner. The details of the process 
depend very much on the degree of idealization used and the assumptions 
made ; examples are given below. 

One approximation that is almost always made is to ignore the departure 
of the airplane from rectilinear flight, i.e. to assume it samples a frozen 
field on a straight line. The input ststistics can then be derived quite readily 
from those of the turbulence given in frame FA. Thus let FA have axes 
parallel to Fw, and zero time be chosen so that the coordinates of the 
airplane mass center relative to FA are (Vet, 0,O). The connection between 
(2, y, z), the coordinates of a point in Fv, and (x,, x,, 2,) the coordinates of a 
point in Fa is then 

We now change notation for the turbulent velocities, to emphasize that they 
are parallel to the axes of Fw, denoting them (u,, v,, w,). Being functions of 
(x,, x,, x3) they become functions of (x, y, z, t) via (13.3,2)--or for a $xed 
point of the airplane, functions oft  only. The spectral component (see after 
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13.2,14) is then a velocity field of the form 

or for the two-dimensional case, the above with the z term absent. It is 
seen to consist of a time-periodic velocity at any fixed point (a, y, z)  of the 
vehicle. 

Even when the system is linear, it is not in general true (as was erroneously 
stated on p. 321 of Dynamics of Plight-Stability and Control) that the 
response to turbulence can be constructed of a superposition of the three 
separate responses to  u,, v,, and w,. This is the case only when there are no 
cross-correlations between elements of the input vector associated with 
different components of the turbulence. Equations (3.4,48 and 49) make it  
clear that there are contributions to response power and cross spectra that 
derive from cross spectra of the input components. Such cross spectra exist 
even in isotropic turbulence if variations over the vehicle are allowed for, as 
illustrated in Fig. 13.2 for the points A and C of a wing-fin combination. 
I n  spite of the above theoretical condition, practical calculations of gust 
response are often made for one input component at a time. There is no 
assurance, however, that significant errors of omission will not occur when 
that is done. 

THE AIRPLANE AS A POINT 

The simplest approximation is that in which the variations of (u,, v,, w,) 
over the vehicle are neglected. The airplane is in effect treated as a point 
traversing the a, axis, with coordinates (Vet, 0,O).  The input vector is then 
clearly 

Furthermore, the usual aerodynamic assumptions that lead to decoupling 
of the system equations into lateral and longitudinal sets make it  possible 
to separate the response problem into two parts-the longitudinal response 
to 

and the lateral response to 
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The associated force vectors and gust transfer functions are 

where [hg6,dg] = [ugvgwg] + Ve. 
The disturbing forces ACT. etc. can be incorporated in (5.13, 18 to 20) or 
(5.14, 1 to 3) by adding them to the associated control term, i.e. by replacing 
ACTc by (ACTo + ACT.), etc. Now in the point approximation there is no 
difference between aerodynamic forces associated with relative translation 
of the airplane w.r.L. the air whether it is the air that moves or the airplane, 
and in linear approximation dg = Pg, iSg = a,. Thus the eleven transfer 
functions above are recognized as being identical to those previously used to 
relate airplane motion to aerodynamic forces, as follows (note the minus 
signs, ug reduces the relative velocity, etc.) : 

The adoption of the point approximation means that the airplane is 
assumed to be vanishingly small with respect to the wavelengths of all 
significant spectral components (e.g. 1 >> span in Fig. 13.3). m e  non- 
dimensional frequency parameter used in the Theodorsen and Sears functions 
for unsteady flow effects is k = wC/2 Ve, which we can relate to Q1 by (13.3,3). 
It gives o = QIVe, whence 

Thus (E/1,) + 0 implies Qld -+ 0 and k -+ 0. Hence it is consistent in this 



546 Dynamics of atmospheric $ight 

approximation to use the quasistatic aerodynamic representation by aero- 
dynamic derivatives. Finally then the gust transfer functions are 

RANGE OF VALIDITY OF THE POINT APPROXIMATION 

It should be observed at the outset that the only excitation of the lateral 
modes that can exist in this approximation is that provided by vg. In fact 
comparable inputs may arise from the spanwise gradients in w, and zc,, 
which are explicitly excluded in this approximation. It must therefore be 
considered of limited usefulness for calculat,ing lateral response. 

In  considering the validity for longitudinal response, we must ascertain 
for what limiting values of (Q,, Q,) or (A,, A,) the airplane of Fig. 13.5 can be 
considered to be vanishingly small. We consider the limits on Q, and Q2 
separately. 

For Cl, we use the criterion that the complex amplitude of the lift on a 
finite wing flying through a sinusoidal inclined wave of upwash shall not 
depart too far from its value a t  k = 0. This problem has been solved by 
Filotas (ref. 7.16), and from his results we may take as a reasonable upper 
limit k + .05. It follows that the range of validity is 

For an airplane with mean chord of 20 ft, this yields Ql < .005, and as shown 
on Fig. 13.6 for large-scale turbulence a small part of the turbulent energy is 
contained in the spectral components of wavelength shorter than this. This 
fraction increases rapidly, however, with decrease in L or increase in chord. 

For the limit on 0, we again use Filotas' result for finite wings. He finds 
that the effect of spanwise variation is given by the factor 

where Jl denotes a Bessel function of the first kind and b is the wing span. 
This factor is unity when Q2 = 0, and decreases by roughly 10 % at Q2b/2 = 1. 



Flight in a turbulent atmosphere 547 

We therefore take this value as the upper limit for Q, in the point approxi- 
mation, i.e. 

S2,b < 1 
2 

(13.3,13) 
2, 
- > P  
b 

For an airplane of span 100 ft, the upper limit on Q, is 2 x lod2. Its effect 
is not immediately apparent, however, as was the case with the Ql limit. 
To evaluate it, we must calculate the truncated one-dimensional spectra 

in which the integration excludes those wave numbers that exceed the valid 
limit. These truncated spectra cannot be evaluated explicitly in terms of 
elementary functions for the von KArmAn spectra, but can be for the Dryden 
spectra. Formulae and graphs of the latter are given in ref. 13.10. To show 
the effect of truncation, @g3(Ql) has been evaluated numerically for the von 
KArmAn spectrum, with L = 5000 ft, b = 200 ft, and Q: = 2/b. The result 
is shown on Fig. 13.6. It is seen to be quite close to the basic spectrum a,, 
for these values of scale and span, the difference being confined to the high 
wave numbers. The areas under a,, and differ by only a few percent. 
For smaller scale of turbulence the difference increases. 

In  summary we may conclude that for many cases, especially for large-scale 
turbulence and small airplanes, the point approximation can give useful 
results of good accuracy for the longitudinal rigid-body responses. It is 
probably better, and certainly simpler, to use the basic (not truncated) one- 
dimensional spectra, on the grounds that including the small contribution 
from the short-wavelength components of the spectrum with an inaccurate 
theory is better than leaving them out altogether. On the other hand, no 
such general statement can be made about the responses in the structural 
or lateral rigid-body modes. 

THE FINITE AIRPLANE 

The finite extent of the airplane is seen to be important when significant 
variations of gust velocity can occur between one point and other--e.g. 
between right and left wing tips, or between wing and tail. An example of 
these effects for a wing is seen in the experimental results of Nettleton (ref. 
13.14), a sample of which is shown in Fig. 13.8. This is a rather extreme case 
in that the scale of the turbulence L is about equal to the wing chord. The 
aspect ratio is effectively infinite. Here w is the upwash measured a short 
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Ay ins 

FIG. 13.8 Spanwise cross-correlations of a wing in small-scale turbulence. 

distance in front of the wing, L is the lift measured on a small strip of wing, 
Ay is the spanwise separation of two lift strips, or of one strip and the upwash 
probe, and 7* is the time delay for which RWL(Ay, T) is a maximum. A rel- 
atively small correlation length for w is seen to lead to a larger correlation 
length for (w, L) and a still larger one for (L, L). 

To allow for such effects, i.e. to remove altogether or in part the limitations 
we found above on wave number, naturally entails some cost in additional 
complexity of analysis or experiment. We outline below the principles of 
five methods of doing this that seem adequately to span the spectrum of 
possible approaches, although they are not all-inclusive. In all the analysis 
methods the approximation is made that the airplane has no significant z 
dimension, i.e. that variations of the gust field with x are negligible. The tur- 
bulence is then characterized by a two-dimensional spectrum function 
Y(Q,, Q,) or its associated correlation function. Each of the methods has 
advantages and limitations, and the choice for any particular study will re- 
flect the problem itself, the kind and extent of aerodynamic information 
and computing machinery available, and the tastes of the analyst. 

THE "PANEL" METHOD (ref. 13.5) 

In this method the principle aerodynamic surfaces are divided into N 
panels, as illustrated in Fig. 13.9. At a reference point of the nth panel the 
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I * x2 

(6)  

FIG. 13.9 The panel method. 

turbulent velocities are [ug,(t), vg,(t), wg,(t)], and the gust vector g is the 3N 
column of all these components. The force vector is then 

where f is an ( M  x 1 )  vector, M  being dependent on the problem, and T = 
[t,,] is an ( M  x 3 N )  matrix of aerodynamic coefficients. To carry out the 
analysis of f and subsequently of the spectra of vehicle response one must 
first evaluate all the 3MN transfer functions ti&) and then apply the 
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inputloutput theorem (3.4,48). The latter includes all the cross-spectral 
densities of the components of g, which do not all vanish. 

When the method is applied for one velocity component only, say w,, 
and for a relatively small number of panels, the matrix T is not excessive 
in size. The time functions for the input elements are obtained by using 
(13.3,2), and the relevant cross spectra are derived from them (note that in 
this formulation each input and output quantity is a function of time only). 
Consider for example the wg components at the rnth and nth panels, wgm(t) 
and wg,(t). The cross-correlation is 

which by using Fig. 13.9b we can identify as 

where El and 6, are as shown, and R,, is obtained from (13.2,6) as 

g(E) for the von KBrmBn model is given by (13.2,PS). The Fourier integral 
of R~ , (T)  is then the required one-dimensional input spectrum 

For further details of the panel method the reader is referred to ref. 13.5 
and the literature cited therein. 

SKELTON'S METHOD 

A method proposed by Skelton (ref. 13.11) for a study of a VTOL airplane 
is in some respects similar to both the preceding and following methods, 
yet different from each. In it three points on the vehicle, for example two 
wing tips and the tail, are used to identify nine inputs-three gust components 
a t  each of these three control points, thus 

a (9 x 1) vector. The method is therefore similar to the panel method in that 
the gust vector is defined by the turbulent velocities at a discrete set of 
points. To compute the aerodynamic transfer functions Skelton assumes 
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that the disturbance velocity field is linear in both x and y, so that a change 
in wgl for example implies a change in w, over the whole vehicle of an amount 
proportional to the perpendicular distance from the line passing through 
points 2 and 3. In making an assumption about the whole velocity field 
associated with each input it resembles the following method. The complete 
gust matrix T in this formulation of the analysis, for six degrees of freedom 
would be a (6 x 9 )  matrix. However it would with the usual assumptions 
separate into two smaller matrices for lateral and longitudinal subsystems. 

For further details the reader is referred to ref. 13.11. 

T H E  P O W E R S  SERIES M E T H O D  

A method proposed by the author (refs. 13.9, 13.10) is a "natural" ex- 
tension of the point approximation to higher order. In it the velocity field 
of the airplane is expanded in a Taylor series around the C.G. Thus a typical 
component such as w, would be described by 

in which w,(t), wgz(t) . . . denote values of w,, aw,/ax . . at the C.G. Since 
the velocity field is now completely fixed by the coefficients of series like 
(13.3,16), the vector describing the gust field is the column of all these 
coefficients. In ref. 13.10 the elements of the vector are separated into those 
that produce longitudinal and lateral forces, i.e. 

where only the coefficients of the linear terms in the Taylor series expansions 
have been listed. The number of terms retained fixes both the domain of 
validity in wave number space and the complexity of the analysis. 

We consider now the limits of validity of the first-order Taylor expansion 
corresponding to (13.3,17). The method of ref. 13.9 [Eqs. (9.1) et seq.] when 
applied to the linear part only of the velocity field yields values of C, and 
C, in good agreement with the exact Sears function for k < .5. Thus the 
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limit on Ql is given by [cf. (13.3,12)] 

A large gain in the valid range of Ql (one decade) is obtained relative to the 
point approximation, but only at the cost of using transfer functions for 
unsteady oscillatory motion to represent the aerodynamics. If quasi-steady 
aerodynamics is used (e.g. GLa = CL, etc.) then (3.3,12) still holds. It may 
well be questioned why the power-series method should be used a t  all with 
unsteady aerodynamics-why not preferably go directly to the exact two- 
dimensional transfer functions for gust penetration (see Ribner's method 
below)? The advantage, if any, of this method rests in the availability, or 
ease of obtaining, results for oscillatory translation and rotation of the 
vehicle.? The theoretical and experimental problems posed by the oscillatory 
boundary condition have proved more tractable in the past than that of the 
"running wave" characteristic of gust penetration; solutions for oscillatory 
motions have been vigorously pursued in connection with flutter analyses, 
and measurements of oscillatory transfer functions, although by no means 
easy, are much simpler than those for gust penetration. 

The limit on Q, is assessed from a consideration of the rolling moment 
acting on the wing. An argument based on symmetry considerations (only 
antisymmetric distributions of velocity produce rolling moments) shows that 
an expansion in wave number would be of the form 

Bilotas' approximate solution for rolling moment can in fact be expressed 
in this form, with k = &. Now the linear power series approximation, as we 
show below, is equivalent to retaining only the first term in (13.3,19). Hence 
the error can be assessed from the QZ3 term, leading to the limit for about 
10% error, Q,b < 2 which is the same as (13.3,13) for the lift in the point 
approximation. 

In summary then, the first-order power series method, with quasi-steady 
aerodynamics, has the effect of extending the point approximation to embrace 
lateral responses, with the limitations 

i l l / E  > 60 I,/b > 77 

If unsteady oscillatory aerodynamics are used, the ill limitation is relaxed 
to Al/E > 6. 

t The method was presented at a time when no "two-dimensional Sears function" 
was available. 
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We turn now to the gust transfer function for the power series method. 
As an example let us consider the equations for rigid-body response, and 
use the first-order series. Then from (13.3,17) we get [cf. (13.3,7)-for sim- 
plicity of notation, the subscript g has been omitted here] 

with an obviously similar matrix for T,. In  the quasi-steady approximation, 
some of these matrix elements would be neglected, and the remaining ones 
would be expressed as aerodynamic derivatives. We have already discussed 
the aerodynamic forces associated with (u,, v,, w,), i.e. the elements of the 
first two columns above, which are identical with (13.3,7). The remaining 
elements describe the effect of "gust-gradients" on the airplane. The gradient 
terms wx, w, correspond to linearly varying downwash over the airplane 
surface, which provides boundary conditions on relative motion precisely 
equivalent to rigid-body pitch and roll rotations of the vehicle-see Fig. 
7.13, which illustrates the w, case. The equivalent rates of pitch and roll 
are readily found for an upwash wave of unit amplitude given by [see (13.3,3)] 

pg = - 3 lo = -wG = -in, i.e. 
a~ ( b )  (13.3,21) 

$ = -Wg t* 

and 

E 
note that !&Vet = Q, - t = kf 

2 

Associated with these velocity-gradient terms are aerodynamic forces and 
moments exemplified by 

AC, = Cl9$, = -C,gt*wgu 

ACm = Cm/"wgz 
etc. 

The x and y gradients of u, and v, that appear in (13.3,17) do not have 
correspondingly elegant general interpretations. For example, the influence 
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of u on unswept wings of large aspect ratio is clearly like that of yaw rate, 
gw 

with equivalent value 

However, for small aspect ratio or swept wings the situation is not so 
simple. For a further discussion of the gradient terms, see ref. 13.10. 

Finally, the matrix of input spectra is needed to complete the analysis. 
For the vector g, of (13.3,17) and for isotropic turbulence this would be 
the 5 x 5 Hermitian matrix: 

u 0 0 

Q W W  - 0 @WW$ 

(13.3,23) 

The zero elements arise from isotropy (ref. 13.10). 
Formulae and graphs of the above spectrum functions associated with 

the Dryden model of the turbulence are given in ref. 13.10. (No corresponding 
information is available for the von KbrmAn spectrum, although it can 
readily be derived.) 

RIBNER'S M E T H O D  

The method proposed by Ribner (ref. 13.4) does not fit the pattern of 
the foregoing ones in that no function equivalent to g(t )  is explicitly defined. 
Instead the response is found as a superposition of responses to individual 
spectral components like that pictured in Fig. 13.5. Thus let the wg component 
of a single wave be described by [cf. (13.3,21a)] 

This time-periodic velocity field induces periodic incremental pressure dis- 
tributions that integrate to periodic incremental forces and moments, of 
which for example the lift is described by 

The relationship between the lift and the velocity is given by an aero- 
dynamic transfer function, F(Q1, a,), i.e. 

(note that k = Q1F/2). The mean-square incremental lift produced by the 
whole turbulent field is then given by the basic response theorem [(3.4,51) 
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extended to two dimensions] 

and the one-dimensional spectrum for lift is 

Any vehicle response variable such as angle of attack or load factor is treated 
like the lift above, but the transfer function is of course different. 

The heart of this approach is the availability of aerodynamic transfer 
functions like I?, of which a whole matrix is in general required for all the 
generalized forces and moments associated with rigid and elastic degrees 
of freedom, and with u,, v,, and w, inputs. There are methods available 
for calculating some of these transfer functions for some wing shapes (refs. 
7.16, 13.12), and for propellers (ref. 13.13). 

I n  view of the fact pointed out previously, that the spectra of vehicle 
responses to u,, v,, w, cannot in general be simply superposed (owing to 
the nonvanishing of certain cross-correlations or cross spectra), the three 
velocity components should, strictly speaking, be considered simultaneously. 
Ribner's method has not yet been explicitly extended to cover this case. 

THE SIMULATION METHOD 

When the system equations are nonlinear or the input is nonstationary 
the foregoing methods of analysis all fail. In such situations one approach 
is to construct an appropriate mathematical model of the system-analog or 
digital-and feed in random inputs representing the turbulence. The statisti- 
cal properties of the output can then be determined by analogue or digital 
analysis techniques. 

In  this connection mention should be made of a possible experimental 
technique that does not appear to have been applied yet. It would consist 
of exposing a rigid model of the vehicle to a wind-tunnel flow simulating 
the real turbulence. Force transducers could then produce time records of 
the actual input forces, thus bypassing the whole problem represented 
by the second box of Fig. 13.1. The measured forces and moments provide 
directly the required inputs to the mathematical model, which could be 
connected on line. In  transient situations an ensemble of records could supply 
the appropriate statistics. 
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13.4 AN EXAMPLE 

We shall calculate the longitudinal response of the jet transport used in 
previous examples, cruising at 30,000 ft  through turbulence of 5000 ft  scale. 
I n  this situation the point approximation is valid, and (13.3,7 and 11) give 
the needed input function. For the aerodynamic derivatives we use the same 
numerical values as in Sec. 9.1. The system equations are used in Laplace 
transfrom form, i.e. (5.14,2) with uT and ye both zero. 

We noted in Sec. 11.2 that the phugoid oscillation could be suppressed by 
the pilot by a simple feedback of pitch-attitude to the elevator deflection. 
We provide for this in the following equations by including the control 
equation Ad, = -KO. On combining the equations we get: 

where (Gg, Gg) are Laplace transforms of the nondimensional gust velocities 
(iz,, dB), and 

- -  - - 
Jr = [AV Aa A0 Ad,lT 

0 Q J  
The required frequency-response functions are found by substituting s = 
ik(= iSl,Vet*) and solving the resulting complex algebraic equation for the 
ratios jji(ik)/Cg and jji(ik)/Gg. 
A response variable of interest not directly included in the above is the 

load factor. It is defined by An = ALIW. The lift increment AL is taken 
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as the sum of two parts, that due to aircraft motion (Au, AV) and that due 
to atmospheric motion (u,, w,). The result obtained is 

Some of the more interesting transfer functions and output spectra are 
plotted in Figs. 13.10 and 13.11. In Fig. 13.10 we show the squares of the 
moduli of the transfer functions for speed, angle of attack, pitch attitude, 
and load factor for vertical gust input. Both stick-fixed and controlled 
motion are shown. All the motion responses fall off rapidly at high wave 
number (or high frequency), but the load factor response tends to the constant 
value associated with flight on a rectilinear path at constant speed (i.e. no 
motion response). At wave numbers above the load factors are pro- 
gressively more approximate because of the neglect of unsteady aerodyna- 
mics. Much more accurate values could be obtained by the simple expedient 
of multiplying these by a reduction factor for finite wings in sinusoidal 
gusts-obtained from the generalized Sears function as given by Filotas 
(ref. 7.16). [The appropriate factor is actually Filotas' IS(k,, A)12.] 

The effect of the simple elevator-control law (the simple gain is not, of 
course, the optimum control law for reducing gust response) is seen, as 
expected, to eliminate the phugoid peaks and substantially to reduce the 
pitch response for all frequencies lower than that of the short-period mode. 
With respect to u response, the airplane is seen to act like a low-pass filter, 
with cut-off frequency a t  the short-period mode. 

On combining these transfer functions with the input spectrum, we get 
the output spectra, e.g. for speed response 

etc. These are shown on Fig. 13.11. (Note that these are two-sided spectra- 
twice the area gives the mean square.) It is seen that the point approximation 
is quite adequate in this example for giving the responses in the motion 
variables (AV, Au, 8 )  but is less satisfactory for the load factor, for which 
a substantial fraction of the mean-square value is contributed by frequencies 
above the limit of validity of this approximation. The use of a corrected 
transfer function as noted above would improve the accuracy of this result 
appreciably. 

If the gust input vector were extended to include the gust-gradient term 



FIG. 13.10 Transfer functions for response to w, input. Jet transport cruising at 
30,000 ft and 500 mph with pitch feedback. 



FIG. 13.10. (Cont.) 
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FIG. 13.11 Power spectra of response to w, input. Jet transport cruising at 30,000 ft 
and 600 mph with pitch feedback. 
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aw,/ax = q,, then the right-hand side of (13.5,l) would read 

where % is the Laplace transform of gg = q,t*, and B1(s) would be like B(s) 
but with the additional column [0 - CL, - CMa 0 OIT. In  this case the 
general response theorem (3.4,49) would have to be used to calculate outputs, 
since the cross spectra of both u, and w, with q, are not zero (ref. 13.10). This 
would entail the calculation not only of the moduli of the transfer functions, 
but of their real and imaginary parts. [ ~ n  alternative but equivalent method 
for this case was given in Dynamics of Flight-Stability and Control (Sec. 10.6), 
that does not use the input cross spectra.] 

13.5 GUST ALLEVIATION 

The term gust alleviation interpreted in its broadest sense can mean the 
reduction of any response variable associated with the turbulence. If in 
these responses we include structural stresses and vehicle accelerations as 
well as attitude and trajectory variables i t  may well be that reducing one 
response increases another. For example, if pitch attitude is controlled to 
try to keep the lift constant, then a reduction in E2 would be associated 
with increases in ~ T a n d  2. The term gust alleviation is sometimes used in a 
more restricted sense, applied to the load factor only. 

When one tries to control load factor by a feedback control to the elevator, 
the inherent time lag associated with pitching motion is usually such as to 
make this approach not highly effective (ref. 13.15). When a wing flap 
control is simultaneously used, however, to control the wing lift almost 
instantaneously in response to aircraft normal acceleration, pitch rate, and 

pitch attitude, reductions of an order of magnitude in can be achieved 
(ref. 13.16). 

This illustrates the direction in which we must go in striving for ideal 
gust alleviation (no doubt unachievable in practice). That is, the per- 
turbations in all forces and moments produced by the gust field should 
be just cancelled by automatic fast-acting aerodynamic devices, such as 
flaps and spoilers, circulation control, etc. The ideal result would be a vehicle 
that would have the same motion and structural stresses in rough air as in 
smooth-i.e. rectilinear translation and unity load factor, but with its various 
automatic gust alleviation devices being very active indeed. To be successful 
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such a system would probably need gust field sensors (perhaps angle of 
attack and sideslip vanes much like those used in the measurement of 
turbulence by aircraft) located at strategic points such as wing tips and tail. 
With suitable input-rate terms incorporated, sufficient lead time for actu- 
ating the aerodynamic devices might be obtained. There does not appear 
to be any fundamental technological impediment to achieving very sub- 
stantial reductions in gust response by this approach. Considerations of 
weight, cost, and reliability, however, may present serious economic and 
operational impediments. 
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Errata 

o Some of these errata are s~mple typos, while others are more technically important. 

o The symbol 3 means "should be replaced by." 

o Line n ? means "line n from the bottom." 

o The collaboration of Prof. P.C.Hughes in the preparation of these Enata is gratefully acknowledged. 

Page 74, line 3 ?  : 

Page 74, line 2 ? : 
Tahle 3.3 3 Tahle 2.3 

Page 88, line 10: 

5 = 7  3 <=0.7  

Page 94, Eqs. (3.4,47) and (3.4,48): 

4T 3 4aT 
in five places. 

Page 99, Eq. (3.5,s): 
4T 3 4aT 

in two places. 

Page 118, parag following Eq. (4.6,2), line 1: 

L o b  3 Lob 

Page 123, first line of Eq. (5.1,6): 

PZ 3 qz 

Page 148, Fig. 5.4, Block 4, Input 1: 

Pw , 'w 3 4w. 'W 

Page 150, Fig. 5.6, Block 4: 

Pw , rw 3 qw 3 rw 

Page 151, Fig. 5.7, Block 2: 

b + P  

Page 192, Eq. (5.15,7), eighth equation: 

Should read 

(Z,)'=Z, c o s & + x , s i n ~  

Page 227: 

Eq. (6.5,6) should be labeled Eq. (6.6,5) 

Page 241, Eq. (6.10,ll): 

Chj  3 ch,a 

Page 241, Eq. (6.10,12): 

ChnCL, 3 L C L ,  

Page 246, Eqs. (7.1,2) and (7.1,3): 

Ch,P 3 c,,a 
Page 250, Fig. 7.4, caption: 

". . . (b) Constant thrust and power, and zp = 0 . " 

Page 251, Eqs. (7.3,4) and (7.33): 

sin y 3 tan y 

Page 252, Eq. (7.3,6c), RHS: 
- 

Page 252, Eq. (7.3,6d), RHS: 

Page 269, Eq. (7.3,6d), RHS: 

Insert equation label (7.9,3) to the right of the equation 

for Che, . 
Page 181, line 2 after Eq. (5.13,14): 

dimensional 3 nond~mensional 



Errata 581 

Page 284, Eq. (7.10,11), RHS: 

Delete minus sign, i.e.; 

Page 316, Eq. (8.7,5): 

Should read 

AN, = -m'C2 

Page 317, Table 8.1: 

Regarding the expression for ACn, : 

Page 346, line 8: 

[see (7.8,5)] 3 [see (7.8,2)] 

Page 350, Eq. in line 3: 

Page 351, line 4 above Fig 9.16: 

Remove the comma in "The period goes to infinity, and 

N,,, to zero a t .  . ." 

Page 364, line 6 ? : 
Should read 

f l  :j:i=-0.0136:l.O:-0.0291 
Page 374, Eq. preceding Eq. (9.7,13): 

Nrv 3 N, i  

Page 429, line 13 ? : 
Should read: 

" . . . rnatnx For the glven rudder input rt y~elds asymptotic 

slopes of -2 for f l  and (b , and -1 for r . Thesc 

slopes are reached approxlmately by h = 0.1 for rand 

f l  , but not for (b " 

Pages 436 & 437: 

The heading "DUTCH ROLL APPROXIMATION" should be 
the first hne on p. 436, and thc headlng "SPIRAL/ROLL 

APPROXIMATION" should d~rectly precede the last 
paragraph on p. 436. 

Page 444, Eq. (10.7,3), 2'' row of square matrix, last 
element: 

Is 3 fy 
Page 445, line 6 ? : 
". . . can change sign." + ". . . can change from positlve to 
zero." 

Page 445, Eq. (10.7,7): 

Should read 

Page 446, Eq. (10.7,8), numerator: 

cm 3 c,, 
Page 464, Eq. (11.3,7), second integral on RHS: 

Page 466, second line of Eq. (11.3,ll): 

Should read 

Page 472, just below Eq. (11.4,4): 

Table 9.9 3 Table 9.6 

[Eq.] (1 1.4,3) 3 [Eq.] (11.4,4) 

Page 473, Eq. (11.4,7), the 3-3 element of the square 
matrix: 

Page 481, just below Eq. (11.5,6): 

Should read 

Page 517, Eq. (12.8,5): 

Should read 

Pages 556 & 557, and page 562: 

Eqs. (13.5,1H13.5,7) should be labeled (13.4,l) 
(13.4,7). 
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